【亲测免费】 UCF-SST-CitySim-Dataset 项目使用教程

UCF-SST-CitySim-Dataset 项目使用教程

1. 项目的目录结构及介绍

UCF-SST-CitySim-Dataset 项目的目录结构如下:

UCF-SST-CitySim-Dataset/
├── asset/
├── data/
├── dataTool/
├── paper/
├── .gitignore
├── LICENSE
└── README.md

目录结构介绍

  • asset/: 存放项目相关的资源文件,如图片、图标等。
  • data/: 存放数据集文件,包括从无人机视频中提取的车辆轨迹数据。
  • dataTool/: 存放数据处理工具和脚本,用于数据提取和处理。
  • paper/: 存放与项目相关的研究论文和文档。
  • .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
  • LICENSE: 项目的开源许可证文件,本项目使用 Apache-2.0 许可证。
  • README.md: 项目的说明文档,包含项目的基本介绍、使用方法和贡献指南。

2. 项目的启动文件介绍

UCF-SST-CitySim-Dataset 项目本身是一个数据集项目,没有传统的启动文件(如 main.pyapp.py)。项目的核心是数据集文件和数据处理工具。

数据处理工具

dataTool/ 目录下,你可以找到用于处理数据集的脚本和工具。这些工具通常用于从原始数据中提取有用的信息,如车辆轨迹、信号灯时间等。

示例启动脚本

虽然项目没有传统的启动文件,但你可以编写自己的脚本来加载和处理数据。例如:

import pandas as pd

# 加载数据集
data = pd.read_csv('data/trajectory_data.csv')

# 处理数据
processed_data = data.groupby('vehicle_id').sum()

# 保存处理后的数据
processed_data.to_csv('data/processed_trajectory_data.csv')

3. 项目的配置文件介绍

UCF-SST-CitySim-Dataset 项目没有传统的配置文件(如 config.yamlsettings.py)。项目的配置主要通过代码中的参数和数据处理脚本来实现。

数据处理脚本的配置

dataTool/ 目录下的脚本中,你可以通过修改代码中的参数来配置数据处理的行为。例如:

# 配置文件路径
data_path = 'data/trajectory_data.csv'
output_path = 'data/processed_trajectory_data.csv'

# 配置处理参数
min_speed = 10  # 最小速度阈值
max_speed = 120  # 最大速度阈值

通过修改这些参数,你可以自定义数据处理的行为。

总结

UCF-SST-CitySim-Dataset 项目是一个专注于车辆轨迹数据集的开源项目。项目的核心是数据集文件和数据处理工具。虽然没有传统的启动文件和配置文件,但你可以通过编写自定义脚本来加载和处理数据,并通过代码中的参数来配置数据处理的行为。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘珑鹏Island

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值