【亲测免费】 YOLOv5 Ascend:华为昇腾平台上的高效目标检测

YOLOv5 Ascend:华为昇腾平台上的高效目标检测

项目介绍

YOLOv5 Ascend 是一个在华为昇腾平台上运行的 YOLOv5 模型推理程序。该项目充分利用了华为 Atlas 300I 推理卡(Ascend 310 AI CPU)的强大计算能力,通过 CANN 5.0.2 和 npu-smi 21.0.2 工具链,实现了高效的目标检测任务。用户可以通过简单的命令行操作,快速部署和运行 YOLOv5 模型,进行实时的目标检测。

项目技术分析

技术栈

  • 硬件平台:华为 Atlas 300I 推理卡(Ascend 310 AI CPU)
  • 软件环境:CANN 5.0.2、npu-smi 21.0.2、Python
  • 依赖库:opencv_python、Pillow、torch、torchvision

模型转换

  1. PyTorch 到 ONNX:首先使用 ultralytics/yolov5 训练 YOLOv5 模型,并将其导出为 ONNX 格式。
  2. ONNX 到 OM:在华为昇腾平台上,使用 atc 工具将 ONNX 模型转换为 OM 模型,以便在 Ascend 310 AI CPU 上进行推理。

推理流程

  1. 克隆仓库:将生成的 OM 模型文件移动到项目目录中。
  2. 编辑标签文件:根据实际需求编辑标签文件。
  3. 运行推理程序:执行 python detect_yolov5_ascend.py 命令,结果将保存到 img_out 文件夹中。

项目及技术应用场景

YOLOv5 Ascend 适用于多种目标检测场景,特别是在需要高效、实时的目标检测任务中表现尤为出色。以下是一些典型的应用场景:

  • 智能监控:实时检测监控视频中的目标,如行人、车辆等。
  • 工业自动化:在生产线上实时检测产品缺陷或异常。
  • 自动驾驶:实时检测道路上的行人、车辆、交通标志等。
  • 安防系统:实时检测异常行为或可疑物体。

项目特点

  1. 高效性:基于华为昇腾平台的强大计算能力,YOLOv5 Ascend 能够实现高效的目标检测,满足实时性要求。
  2. 易用性:项目提供了完整的模型转换和推理流程,用户只需简单的命令行操作即可完成部署和运行。
  3. 灵活性:支持自定义标签文件,用户可以根据实际需求灵活调整检测目标。
  4. 开源性:项目完全开源,用户可以自由修改和扩展,满足个性化需求。

结语

YOLOv5 Ascend 是一个在华为昇腾平台上实现的高效目标检测解决方案,适用于多种实时目标检测场景。无论你是开发者还是研究人员,都可以通过该项目快速部署和运行 YOLOv5 模型,体验华为昇腾平台的强大计算能力。欢迎访问 YOLOv5 Ascend 项目仓库,了解更多详情并开始你的目标检测之旅!

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

<think>好的,我现在需要在华为升腾平台上部署YOLOv5模型。首先,我需要了解整个流程是怎样的。根据用户提供的引用内容,特别是引用[2]中提到,华为的CANN库对标的是NVIDIA的CUDA,所以安装CANN后可以使用PyTorch,但需要将模型转换为华为的OM模型。这可能涉及到模型转换工具ATC的使用。 接下来,引用[3]中的例子提到了在OrangePi AIPro上进行YOLOv5的部署,使用了预训练的pt文件,然后通过predict.py运行检。这说明部署过程可能包括将PyTorch模型转换为昇腾支持的格式,然后使用特定的推理脚本。 首先,我需要确认环境准备。根据引用[2],昇腾处理器需要安装CANN套件,并且支持PyTorch框架。因此,第一步应该是安装CANN和相关依赖。然后,需要获取YOLOv5的源码,并确保其适配昇腾平台,可能需要修改部分代码或使用昇腾提供的库。 接下来是模型转换。用户提到的atc工具,这是将模型转换为OM格式的关键步骤。YOLOv5的PyTorch模型(.pt)需要先导出为ONNX格式,然后再通过ATC转换为OM模型。这里需要注意是否有特定的操作符或层需要调整,以适应昇腾的硬件。 然后,部署和推理阶段。引用[3]中的示例使用predict.py脚本,但昇腾平台上可能需要使用不同的推理接口,比如使用昇腾的ACL(Ascend Computing Language)或者PyTorch的昇腾后端。需要查看昇腾的文档,确定如何加载OM模型并进行推理。 此外,性能优化也是一个考虑点。昇腾平台可能有特定的优化建议,比如模型量化、图优化等,这些在引用[1]中提到的YOLOv5 Ascend项目可能有相关实现。需要参考项目仓库的说明,应用这些优化方法。 可能遇到的问题包括模型转换失败,某些层不支持,或者推理时性能不佳。需要查阅昇腾的文档和社区,寻找解决方案,或者调整模型结构。例如,在模型转换时,可能需要添加特定的配置参数,或者修改模型的某些部分以适应ATC工具的要求。 总结步骤大致为:环境准备→模型转换→部署推理→性能优化。需要逐步检查每个环节,确保符合昇腾平台的要求,并参考提供的引用中的具体操作,如使用ATC工具转换模型,运行预脚本等。</think>在华为昇腾AI处理器上部署YOLOv5模型的流程可分为以下步骤: --- ### **一、环境准备** 1. **安装CANN套件** 华为昇腾平台需安装异构计算架构CANN(Compute Architecture for Neural Networks),提供昇腾处理器的驱动和AI框架支持。安装完成后,PyTorch等框架可直接调用昇腾硬件资源[^2]。 2. **配置Python环境** 建议使用昇腾官方推荐的Python版本(如Python 3.7+),并安装依赖库: ```bash pip install torch numpy opencv-python ``` --- ### **二、模型转换** 1. **导出YOLOv5模型为ONNX格式** 使用YOLOv5官方脚本将预训练模型(`.pt`文件)导出为ONNX格式: ```bash python export.py --weights yolov5s.pt --include onnx --opset 12 ``` 2. **使用ATC工具转换为OM模型** 昇腾的`atc`工具用于将ONNX模型转换为昇腾专用的离线模型(`.om`文件): ```bash atc --model=yolov5s.onnx --framework=5 --output=yolov5s_om --input_format=NCHW --soc_version=Ascend310 ``` *注意:需根据具体昇腾芯片型号(如Ascend 310/910)调整`soc_version`参数。* --- ### **三、部署与推理** 1. **加载OM模型并执行推理** 使用昇腾提供的ACL(Ascend Computing Language)接口或PyTorch昇腾后端进行推理。示例代码片段: ```python import torch from ais_bench.infer.interface import InferSession # 初始化昇腾推理会话 session = InferSession(device_id=0, model_path="yolov5s_om.om") # 预处理输入数据 input_data = preprocess(image) # 执行推理 outputs = session.infer([input_data]) # 后处理输出结果 detections = postprocess(outputs) ``` 2. **运行目标检测脚本** 参考引用[3]中的方法,使用昇腾优化的预脚本: ```bash python segment/predict.py --weights ~/yolov5s_om.om --data huawei.jpg ``` --- ### **四、性能优化建议** - **启用混合精度**:在模型转换时添加`--precision_mode allow_fp32_to_fp16`以启用FP16加速。 - **使用AOE调优工具**:通过自动优化引擎(AOE)对OM模型进行性能调优。 - **多线程推理**:利用昇腾处理器的多核并行能力提升吞吐量[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万宁谨Magnus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值