使用LangSmith追踪Ragas评估指标的技术指南
前言
在大型语言模型(LLM)应用开发过程中,评估生成内容的质量至关重要。Ragas作为一个专注于评估LLM生成质量的框架,与LangSmith的集成可以显著提升评估过程的可观测性和可追溯性。本文将详细介绍如何利用LangSmith来追踪Ragas的评估指标,帮助开发者更好地理解和优化LLM应用。
LangSmith简介
LangSmith是一个专为LLM应用设计的全链路追踪和分析平台,它能够:
- 记录LLM调用的完整流程
- 可视化模型交互过程
- 提供性能分析和优化建议
- 支持团队协作和知识共享
环境配置
在使用Ragas进行LLM评估前,需要先配置LangSmith环境。这主要通过设置以下环境变量实现:
# 启用LangSmith V2版本的追踪功能
export LANGCHAIN_TRACING_V2=true
# 指定LangSmith API端点
export LANGCHAIN_ENDPOINT=https://api.smith.langchain.com
# 设置你的API密钥
export LANGCHAIN_API_KEY=<your-api-key>
# 可选:指定项目名称,默认为"default"
export LANGCHAIN_PROJECT=<your-project>
准备评估数据集
Ragas评估需要结构化的数据集,通常包含以下几个关键字段:
user_input
: 用户输入的问题或指令retrieved_contexts
: 检索到的上下文信息response
: LLM生成的响应reference
: 参考答案或标准答案
以下是创建评估数据集的示例代码:
from ragas import EvaluationDataset
dataset = [
{
"user_input": "Which CEO is widely recognized for democratizing AI education through platforms like Coursera?",
"retrieved_contexts": [
"Andrew Ng, CEO of Landing AI, is known for his pioneering work in deep learning and for democratizing AI education through Coursera."
],
"response": "Andrew Ng is widely recognized for democratizing AI education through platforms like Coursera.",
"reference": "Andrew Ng, CEO of Landing AI, is known for democratizing AI education through Coursera.",
},
# 更多示例...
]
evaluation_dataset = EvaluationDataset.from_list(dataset)
执行评估并追踪指标
Ragas提供了多种评估指标,包括上下文召回率(LLMContextRecall)、忠实度(Faithfulness)和事实正确性(FactualCorrectness)等。我们可以结合LangSmith来追踪这些指标的评估过程:
from ragas import evaluate
from ragas.llms import LangchainLLMWrapper
from langchain_openai import ChatOpenAI
from ragas.metrics import LLMContextRecall, Faithfulness, FactualCorrectness
# 初始化评估使用的LLM
llm = ChatOpenAI(model="gpt-4o-mini")
evaluator_llm = LangchainLLMWrapper(llm)
# 执行评估
result = evaluate(
dataset=evaluation_dataset,
metrics=[LLMContextRecall(), Faithfulness(), FactualCorrectness()],
llm=evaluator_llm,
)
print(result)
评估结果将显示各指标的得分,同时所有评估过程会被自动记录到LangSmith平台。
LangSmith仪表盘分析
在LangSmith仪表盘中,你可以:
- 查看每个评估样本的详细执行流程
- 分析LLM在评估过程中的推理路径
- 比较不同样本的评估结果
- 识别常见错误模式和改进点
仪表盘提供了直观的可视化界面,帮助开发者快速定位问题并优化评估策略。
最佳实践
- 项目分类:为不同类型的评估创建不同的LangSmith项目,便于管理
- 标签系统:利用LangSmith的标签功能标记不同类型的评估
- 定期审查:定期分析评估结果,建立基准线
- 迭代优化:根据评估结果不断调整评估指标和权重
结语
通过将Ragas与LangSmith集成,开发者可以获得更全面、更透明的LLM评估体验。这种组合不仅提高了评估过程的可观测性,还为持续优化LLM应用提供了数据支持。希望本指南能帮助你更好地利用这两个强大工具来提升LLM应用的质量和可靠性。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考