使用LangSmith追踪Ragas评估指标的技术指南

使用LangSmith追踪Ragas评估指标的技术指南

【免费下载链接】ragas Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines 【免费下载链接】ragas 项目地址: https://gitcode.com/gh_mirrors/ra/ragas

前言

在大型语言模型(LLM)应用开发过程中,评估生成内容的质量至关重要。Ragas作为一个专注于评估LLM生成质量的框架,与LangSmith的集成可以显著提升评估过程的可观测性和可追溯性。本文将详细介绍如何利用LangSmith来追踪Ragas的评估指标,帮助开发者更好地理解和优化LLM应用。

LangSmith简介

LangSmith是一个专为LLM应用设计的全链路追踪和分析平台,它能够:

  1. 记录LLM调用的完整流程
  2. 可视化模型交互过程
  3. 提供性能分析和优化建议
  4. 支持团队协作和知识共享

环境配置

在使用Ragas进行LLM评估前,需要先配置LangSmith环境。这主要通过设置以下环境变量实现:

# 启用LangSmith V2版本的追踪功能
export LANGCHAIN_TRACING_V2=true

# 指定LangSmith API端点
export LANGCHAIN_ENDPOINT=https://api.smith.langchain.com

# 设置你的API密钥
export LANGCHAIN_API_KEY=<your-api-key>

# 可选:指定项目名称,默认为"default"
export LANGCHAIN_PROJECT=<your-project>

准备评估数据集

Ragas评估需要结构化的数据集,通常包含以下几个关键字段:

  1. user_input: 用户输入的问题或指令
  2. retrieved_contexts: 检索到的上下文信息
  3. response: LLM生成的响应
  4. reference: 参考答案或标准答案

以下是创建评估数据集的示例代码:

from ragas import EvaluationDataset

dataset = [
    {
        "user_input": "Which CEO is widely recognized for democratizing AI education through platforms like Coursera?",
        "retrieved_contexts": [
            "Andrew Ng, CEO of Landing AI, is known for his pioneering work in deep learning and for democratizing AI education through Coursera."
        ],
        "response": "Andrew Ng is widely recognized for democratizing AI education through platforms like Coursera.",
        "reference": "Andrew Ng, CEO of Landing AI, is known for democratizing AI education through Coursera.",
    },
    # 更多示例...
]

evaluation_dataset = EvaluationDataset.from_list(dataset)

执行评估并追踪指标

Ragas提供了多种评估指标,包括上下文召回率(LLMContextRecall)、忠实度(Faithfulness)和事实正确性(FactualCorrectness)等。我们可以结合LangSmith来追踪这些指标的评估过程:

from ragas import evaluate
from ragas.llms import LangchainLLMWrapper
from langchain_openai import ChatOpenAI
from ragas.metrics import LLMContextRecall, Faithfulness, FactualCorrectness

# 初始化评估使用的LLM
llm = ChatOpenAI(model="gpt-4o-mini")
evaluator_llm = LangchainLLMWrapper(llm)

# 执行评估
result = evaluate(
    dataset=evaluation_dataset,
    metrics=[LLMContextRecall(), Faithfulness(), FactualCorrectness()],
    llm=evaluator_llm,
)

print(result)

评估结果将显示各指标的得分,同时所有评估过程会被自动记录到LangSmith平台。

LangSmith仪表盘分析

在LangSmith仪表盘中,你可以:

  1. 查看每个评估样本的详细执行流程
  2. 分析LLM在评估过程中的推理路径
  3. 比较不同样本的评估结果
  4. 识别常见错误模式和改进点

仪表盘提供了直观的可视化界面,帮助开发者快速定位问题并优化评估策略。

最佳实践

  1. 项目分类:为不同类型的评估创建不同的LangSmith项目,便于管理
  2. 标签系统:利用LangSmith的标签功能标记不同类型的评估
  3. 定期审查:定期分析评估结果,建立基准线
  4. 迭代优化:根据评估结果不断调整评估指标和权重

结语

通过将Ragas与LangSmith集成,开发者可以获得更全面、更透明的LLM评估体验。这种组合不仅提高了评估过程的可观测性,还为持续优化LLM应用提供了数据支持。希望本指南能帮助你更好地利用这两个强大工具来提升LLM应用的质量和可靠性。

【免费下载链接】ragas Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines 【免费下载链接】ragas 项目地址: https://gitcode.com/gh_mirrors/ra/ragas

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值