RocketMap项目中的Speed Scheduler扫描方法详解
概述
Speed Scheduler是RocketMap项目中一种创新的扫描调度算法,它通过智能化的扫描策略和速度控制机制,实现了高效的游戏数据采集。与传统的Hex Scan或Spawnpoint Scan相比,Speed Scheduler在保持合规性的同时,显著提升了扫描效率和准确性。
核心特性
1. 智能速度控制
- 可配置常规扫描速度限制(默认35 km/h)
- 高级账号遭遇速度限制(默认25 km/h)
- 零值可禁用速度限制
2. 自动化扫描流程
- 完整区域初始扫描
- 自动切换至精确产卵时间追踪(TTH)
- 最终仅针对产卵点进行扫描
3. 产卵点智能识别
- 支持15分钟、30分钟和60分钟三种产卵点类型识别
- 自动调整扫描时间以匹配产卵点类型
- 动态识别新增产卵点
- 自动检测并停止扫描已移除的产卵点
配置指南
基础配置示例
runserver.py -speed -st 25 -w 100 -ac accounts.csv
关键参数说明
-st
(步长):建议设置大于20的值,较小的值需要更多实例支持-sd
(扫描延迟):默认速度限制下无需设置(约12秒间隔已足够)-kph
:设置最大扫描速度(km/h)--hlvl-kph
:设置高级账号的最大遭遇速度
特殊场景配置
- 蜂巢模式:适用于超大区域扫描(-st > 50)
- 无抖动模式:完全兼容,不影响内部位置计算
- JSON产卵点列表:当前版本不支持
工作原理深度解析
初始扫描阶段
- 约1小时完成全区域扫描(需足够的工作线程)
- 采用五波段扫描策略,显著减少所需扫描次数(仅为传统方法的1/5)
- 每个位置间隔约12分钟扫描
产卵时间识别(TTH)
- 采用二分查找算法定位精确消失时间
- 通常5次内即可确定TTH
- 对于罕见产卵类型(非标准15/30/60分钟),识别率可能维持在99%左右
动态调整机制
- 发现新产卵点时自动重置相关区域扫描
- 连续5次未检测到预期产卵点则停止扫描
- 工作线程自主选择最优扫描目标
性能优化建议
工作线程配置
工作线程数 ≈ 单元格数 / 20
单元格数 = (steps × (steps - 1) × 3 + 1)
示例:-st 26 → 1951单元格 → 约98个工作线程
扫描效率提升
- 初始扫描完成后可适当减少工作线程
- 关注"Spawns Reached"指标,100%表示效率最优
- 降低扫描速度需相应增加工作线程
常见问题排查
警告信息处理
-
速度违规警告:
- 确认已启用-speed参数
- 检查数据库工作线程表是否被清除
- 可能是水域等无产卵点区域正常现象
-
无效扫描警告(0/0/0):
- 检查验证码状态
- 确认IP未被封禁
- 避免同时使用-no-gyms和-no-pokestops参数
-
连续未发现产卵点警告:
- 可能是极罕见的双产卵点
- 可能产卵点已被移除
状态监控指标
- 初始扫描完成度:应1小时左右达100%
- TTH发现率:通常需1天达90%+
- 产卵点到达率:初始阶段较低,后期应达100%
- 扫描成功率:正常应保持99%+
最佳实践
-
区域规划:
- 避免频繁更改扫描位置(会触发重新初始扫描)
- 移动扫描位置时保持速度限制
-
资源分配:
- 优先增加-st值而非使用蜂巢模式
- 根据产卵密度动态调整工作线程数
-
异常处理:
- 长时间显示"无扫描目标"可能是监管线程异常
- 定期检查日志中的异常信息
技术优势
Speed Scheduler通过创新的算法设计,实现了:
- 更少的API调用次数
- 更高的数据准确性
- 更好的合规性保障
- 自适应扫描策略
- 动态资源分配
这种设计特别适合以宝可梦扫描为主要目标的场景,为运营者提供了高效可靠的解决方案。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考