LazyLLM项目实战:构建知识库问答助手全流程解析
概述
在本文中,我们将深入探讨如何基于LazyLLM框架构建一个完整的知识库问答助手系统。这个系统能够根据用户查询从知识库中检索相关信息,并生成准确的回答。我们将从基础版本开始,逐步优化系统架构,最终实现一个高效、可扩展的解决方案。
基础架构设计
核心组件
LazyLLM为知识库问答系统提供了三个核心模块:
- Document模块:负责知识库文档的加载和管理
- Retriever模块:实现文档检索功能
- Reranker模块:对检索结果进行重新排序
基础版本实现
我们先实现一个最简单的问答系统版本,流程如下:
- 用户输入查询问题
- 系统从文档集合中检索相关文档片段
- 将检索结果和问题一起提交给大语言模型
- 返回模型生成的答案
import lazyllm
# 加载知识库文档
documents = lazyllm.Document(dataset_path="/path/to/your/doc/dir",
embed=lazyllm.OnlineEmbeddingModule(),
manager=False)
# 创建检索器
retriever = lazyllm.Retriever(doc=documents,
group_name="CoarseChunk",
similarity="bm25_chinese",
topk=3)
# 初始化大语言模型
llm = lazyllm.OnlineChatModule()
# 设置提示模板
prompt = '作为AI问答助手,你需要根据提供的上下文回答问题。'
llm.prompt(lazyllm.ChatPrompter(instruction=prompt, extra_keys=['context_str']))
# 处理用户查询
query = input("请输入问题(输入'quit'退出): ")
if query == "quit":
exit(0)
# 检索并生成回答
doc_node_list = retriever(query=query)
response = llm({
"query": query,
"context_str": "".join([node.get_content() for node in doc_node_list]),
})
print(f"回答: {response}")
这个基础版本虽然简单,但已经具备了问答系统的基本功能。在实际应用中,我们需要考虑更多优化点。
进阶优化方案
多策略检索与重排序
为了提高检索质量,我们可以采用多种检索策略:
- 粗粒度分块检索:将文档分成较大的块进行检索
- 句子级检索:在句子级别进行更精细的检索
# 创建句子级节点组
documents.create_node_group(name="sentences",
transform=lambda d: '。'.split(d))
# 创建两个不同策略的检索器
retriever1 = lazyllm.Retriever(doc=documents,
group_name="CoarseChunk",
similarity="bm25_chinese",
topk=3)
retriever2 = lazyllm.Retriever(doc=documents,
group_name="sentences",
similarity="cosine",
topk=3)
# 添加重排序模块
reranker = lazyllm.Reranker(name="ModuleReranker",
model=lazyllm.OnlineEmbeddingModule(type="rerank"),
topk=1)
并行处理流程优化
利用LazyLLM的流程控制工具,我们可以优化系统性能:
with lazyllm.pipeline() as ppl:
with lazyllm.parallel().sum as ppl.prl:
prl.retriever1 = lazyllm.Retriever(doc=documents,
group_name="CoarseChunk",
similarity="bm25_chinese",
topk=3)
prl.retriever2 = lazyllm.Retriever(doc=documents,
group_name="sentences",
similarity="cosine",
topk=3)
ppl.reranker = lazyllm.Reranker(name='ModuleReranker',
model=lazyllm.OnlineEmbeddingModule(type="rerank"),
topk=1) | bind(query=ppl.input)
ppl.formatter = (
lambda nodes, query: dict(
context_str = "".join([node.get_content() for node in nodes]),
query = query,
)
) | bind(query=ppl.input)
ppl.llm = lazyllm.OnlineChatModule().prompt(
lazyllm.ChatPrompter(instruction=prompt, extra_keys=['context_str']))
这种设计使得不同检索策略可以并行执行,提高了系统整体效率。
高级定制功能
自定义检索策略
LazyLLM支持用户自定义检索算法:
@lazyllm.tools.rag.register_similarity(mode='text', batch=True)
def MySimilarityFunc(query: str, nodes: List[DocNode], **kwargs) -> List[Tuple[DocNode, float]]:
# 实现自定义相似度计算逻辑
return [(node, custom_score) for node in nodes]
自定义存储后端
系统支持多种存储后端,包括内存、Chroma和Milvus等:
# Milvus存储配置示例
milvus_store_conf = {
'type': 'milvus',
'kwargs': {
'uri': 'localhost:19530',
'index_kwargs': {
'index_type': 'HNSW',
'metric_type': 'COSINE',
}
},
}
# 文档字段定义
doc_fields = {
'comment': DocField(data_type=DataType.VARCHAR, max_size=65535),
'signature': DocField(data_type=DataType.VARCHAR, max_size=32),
}
# 使用自定义存储初始化文档
documents = lazyllm.Document(dataset_path="path/to/docs",
embed=lazyllm.OnlineEmbeddingModule(),
store_conf=milvus_store_conf,
doc_fields=doc_fields,
manager=False)
最佳实践建议
- 文档预处理:确保知识库文档质量,进行必要的清洗和格式化
- 分块策略:根据内容特点选择合适的文档分块方式
- 检索多样性:结合多种检索策略提高召回率
- 结果验证:建立评估机制验证系统回答的准确性
- 性能监控:跟踪系统响应时间和资源使用情况
总结
通过LazyLLM框架,我们可以快速构建一个高效的知识库问答系统。从基础版本到优化版本,再到完全自定义的解决方案,LazyLLM提供了灵活而强大的工具集。无论是简单的问答场景还是复杂的知识管理需求,都能找到合适的实现方案。
本文详细介绍了系统构建的各个环节,包括文档加载、检索策略、结果排序、流程优化和存储定制等。希望这些内容能帮助开发者更好地利用LazyLLM框架构建自己的知识问答应用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考