PySR项目参数调优与工作流程指南

PySR项目参数调优与工作流程指南

引言

PySR是一个基于符号回归的机器学习工具,能够从数据中发现简洁的数学表达式。本文将详细介绍如何调优PySR参数以及优化工作流程,帮助用户更高效地使用这一工具。

基础调优策略

1. 运算符选择原则

在PySR中,运算符的选择至关重要。遵循以下原则可以显著提高搜索效率:

  • 避免冗余运算符:例如pow可以替代square,二元运算符-与一元运算符neg功能相似
  • 只保留必要的运算符:运算符数量越少越好
  • 优先选择基础运算符:如加减乘除等基本运算

2. 运行环境配置

对于高性能计算环境:

  • 推荐使用IPython而非Jupyter Notebook(后者缺少进度条和早期停止功能)
  • 在Slurm集群上运行时,设置cluster_manager="slurm"
  • procs参数设置为整个分配的核心总数

高级调优参数详解

1. 种群与迭代设置

  • populations:建议设置为3*num_cores
  • ncycles_per_iteration
    • 单机运行时保持默认值
    • 在约100核心的集群上,建议设置为5000左右,使主节点占用率低于10%
    • 值越大,工作节点间通信频率越低

2. 约束条件优化

  • constraints:尽可能严格设置
    • 使用pow时,可设置为{"pow": (9, 1)},限制指数只能是变量或常量
  • nested_constraints:防止函数过度嵌套
    • 例如限制sin和cos不能相互嵌套

3. 表达式复杂度控制

  • maxsize:比目标表达式大小稍大
    • 如目标size=30,可设为35
  • maxdepth:可选参数
    • 如需限制深度为5,可设为6-7

4. 其他关键参数

  • parsimony:设为预期最小损失的1/5-1/10
  • weight_optimize:建议设为0.001
  • turbo:设为True可提升约20%性能
  • niterations:最终运行时设为较大值

实验技巧与最佳实践

1. 数据集处理

  • 数据点超过1000时:
    • 低维低噪声:子采样
    • 高维高噪声:设置batching=True
  • 大型数据集:随机采样约1000点

2. 损失函数选择

  • L2DistLoss():标准均方误差
  • L1DistLoss():对异常值更鲁棒
  • 可自定义权重参数weights

3. 数值精度控制

对复杂表达式,可设置precision=64确保数值精度

进阶调优技巧

  1. 运算符复杂度调整:通过complexity_of_operators调整不喜欢的运算符复杂度
  2. 自适应简约性缩放:尝试增大adaptive_parsimony_scaling至1000
  3. 渐进式复杂度增长:使用warmup_maxsize_by防止过早陷入复杂表达式
  4. 变异权重调优:高级用户可以尝试调整变异权重和交叉概率

结果分析与后处理

  1. 使用PySRRegressor.from_file加载保存的搜索结果
  2. 探索发现的方程
  3. 转换为LaTeX格式
  4. 绘制输出结果

注意事项

  1. 避免使用denoiseselect_k_features功能
  2. 修改某些参数(如maxsize)后不能使用warm_start
  3. 在IPython中可按q+Enter停止任务并调整参数

通过以上调优策略和工作流程优化,用户可以更高效地使用PySR进行符号回归分析,发现数据背后简洁而精确的数学表达式。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯滔武Dark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值