nuScenes-lidarseg 激光雷达点云语义分割标注指南
概述
nuScenes-lidarseg 是自动驾驶领域著名的 nuScenes 数据集的一个重要扩展组件,它为激光雷达点云中的每个点提供了精细的语义标签。本文将详细介绍该数据集的标注规范和分类体系,帮助研究人员和开发者更好地理解和使用这一宝贵资源。
核心概念
点云语义分割的意义
激光雷达点云语义分割是自动驾驶环境感知的基础任务之一。通过对每个点进行分类标注,系统可以:
- 准确识别道路上的各类物体
- 区分可行驶区域与障碍物
- 理解复杂场景的语义信息
- 为后续的路径规划和决策提供支持
标注特点
nuScenes-lidarseg 在原有 nuScenes 标注基础上进行了重要扩展:
- 保留了所有原始物体类别(如车辆、行人等)
- 新增了大量背景类别(如可行驶路面、人行道等)
- 实现了点级别的精细标注
- 每个点有且仅有一个语义标签
标注规范详解
基本原则
- 一对一标注:每个激光雷达点必须且只能标注一个类别
- 多模态验证:建议结合相机图像进行标注验证
- 最小点数原则:单个物体可以只有一个点,但需确保准确性
特殊场景处理指南
物体边界处理
- 车辆后视镜、天线等部件应标注为车辆类别
- 人体四肢应标注为行人类别
静态物体与噪声区分
- 静态物体:实际存在但未定义的物理实体
- 噪声:非物理实体(如灰尘、雨滴、烟雾等)
地形分类标准
-
地形(terrain):
- 包括草地、土壤等自然水平面
- 高度低于20cm的植被
- 可能包含边界路缘石
-
其他人造平面(other flat):
- 无法归类为地形或人行道的水平面
- 包括水域等特殊平面
-
人行道(sidewalk):
- 专为行人/自行车设计的铺装道路
- 不一定与机动车道相邻
类别体系详解
nuScenes-lidarseg 在原有类别基础上新增了以下重要类别:
| 类别ID | 类别名称 | 中文说明 | |-------|---------|---------| | 0 | noise | 非物理实体的噪声点 | | 24 | flat.driveable_surface | 车辆可行驶的所有路面 | | 25 | flat.sidewalk | 人行道、自行车道等 | | 26 | flat.terrain | 自然地形(草地、土壤等) | | 27 | flat.other | 其他未分类水平面 | | 28 | static.manmade | 人造建筑物及设施 | | 29 | static.vegetation | 高于20cm的植被 | | 30 | static.other | 未定义的背景物体 | | 31 | vehicle.ego | 采集车自身 |
典型示例解析
-
噪声点(noise):
- 表现为离散的异常点
- 常出现在雨雾天气场景中
- 无实际物理对应物
-
可行驶路面(driveable_surface):
- 包括铺装和非铺装路面
- 涵盖各种道路材质
- 不考虑交通规则限制
-
植被分类:
- 低矮植被(<20cm)归为地形
- 高大植被归为vegetation类别
- 包括树木、灌木等
-
自车点(vehicle.ego):
- 由激光雷达自反射产生
- 在鸟瞰图中清晰可见
- 相机视角下通常被过滤
最佳实践建议
- 多模态验证:充分利用同步的相机图像辅助判断
- 边界处理:对于难以判断的点,参考周围点的类别
- 质量控制:对单点标注要特别谨慎
- 一致性保持:相同物体在不同帧应保持相同类别
应用价值
nuScenes-lidarseg 的精细标注为以下研究提供了宝贵资源:
- 激光雷达点云语义分割算法开发
- 多模态融合感知研究
- 自动驾驶仿真测试
- 场景理解算法评估
通过遵循这些标注规范,研究人员可以获得高质量的训练数据,推动自动驾驶环境感知技术的发展。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考