DB-GPT支持的LLM大全:DeepSeek、Qwen、GLM等60+模型
概述
DB-GPT作为开源的AI原生数据应用开发框架,其核心能力之一就是强大的多模型管理框架(SMMF)。通过SMMF,DB-GPT支持超过60种大语言模型,涵盖了从开源模型到商业API代理模型的完整生态。本文将详细介绍DB-GPT支持的各类模型及其配置方法。
模型支持架构
DB-GPT采用分层架构设计,确保模型管理的灵活性和扩展性:
开源模型支持
DeepSeek系列
DB-GPT全面支持DeepSeek系列模型,包括:
模型名称 | 参数量 | 特点 | 配置文件 |
---|---|---|---|
DeepSeek-R1-0528 | 多种规格 | 推理优化模型 | dbgpt-proxy-deepseek.toml |
DeepSeek-V3-0324 | 多种规格 | 通用大模型 | dbgpt-proxy-deepseek.toml |
DeepSeek-R1 | 多种规格 | 最新推理模型 | dbgpt-proxy-deepseek.toml |
DeepSeek-V3 | 多种规格 | 通用大模型 | dbgpt-proxy-deepseek.toml |
DeepSeek-Coder-V2-Instruct | 专用 | 代码生成专用 | dbgpt-proxy-deepseek.toml |
Qwen系列
通义千问系列模型全面支持:
模型名称 | 参数量 | 特点 | 配置文件 |
---|---|---|---|
Qwen3-235B-A22B | 235B | 超大规模模型 | dbgpt-local-qwen.toml |
Qwen3-30B-A3B | 30B | 高性能平衡 | dbgpt-local-qwen.toml |
Qwen3-32B | 32B | 通用大模型 | dbgpt-local-qwen.toml |
QwQ-32B | 32B | 量化优化版 | dbgpt-local-qwen.toml |
Qwen2.5-Coder系列 | 多种规格 | 代码专用 | dbgpt-local-qwen.toml |
GLM系列
智谱AI的GLM系列模型:
模型名称 | 参数量 | 特点 | 配置文件 |
---|---|---|---|
GLM-Z1-32B-0414 | 32B | 最新Z1系列 | dbgpt-local-glm.toml |
GLM-4-32B-0414 | 32B | GLM-4系列 | dbgpt-local-glm.toml |
glm-4-9b-chat | 9B | 轻量版 | dbgpt-local-glm.toml |
Llama系列
Meta的Llama系列全面支持:
其他开源模型
模型系列 | 代表模型 | 参数量范围 | 特点 |
---|---|---|---|
Gemma | gemma-2-27b-it | 2B-27B | Google轻量模型 |
Yi | Yi-1.5系列 | 6B-34B | 零一万物模型 |
InternLM | internlm-chat | 7B-20B | 书生模型 |
Baichuan | baichuan2 | 7B-13B | 百川模型 |
ChatGLM | chatglm系列 | 6B | 清华智谱 |
Falcon | falcon-40b | 40B | 阿联酋模型 |
Mistral | mistral-7b | 7B | 法国模型 |
商业API代理模型
DB-GPT支持主流的商业API模型代理:
具体支持的商业API
服务商 | 支持模型 | 配置方式 | 特点 |
---|---|---|---|
OpenAI | ChatGPT系列 | dbgpt-proxy-openai.toml | 国际主流 |
阿里云 | 通义千问 | dbgpt-proxy-tongyi.toml | 国产优秀 |
百度 | 文心一言 | 相关配置 | 中文优化 |
讯飞 | 星火大模型 | 相关配置 | 语音特色 |
智谱AI | ChatGLM | 相关配置 | 开源转商业 |
百川 | Baichuan | 相关配置 | 专注中文 |
模型配置详解
本地模型配置示例
以Qwen模型为例的配置文件:
[models]
[[models.llms]]
name = "Qwen2.5-Coder-0.5B-Instruct"
provider = "hf"
path = "models/Qwen2.5-Coder-0.5B-Instruct"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
path = "models/BAAI/bge-large-zh-v1.5"
API代理模型配置
DeepSeek API代理配置:
[[models.llms]]
name = "deepseek-reasoner"
provider = "proxy/deepseek"
api_key = "your_deepseek_api_key"
模型选择指南
按场景选择模型
应用场景 | 推荐模型 | 理由 |
---|---|---|
代码生成 | DeepSeek-Coder, Qwen-Coder | 代码专用优化 |
中文对话 | Qwen, Baichuan, ChatGLM | 中文语料丰富 |
推理任务 | DeepSeek-R1, Llama-3.1 | 推理能力强大 |
轻量部署 | Gemma, Qwen2.5-0.5B | 参数少速度快 |
企业应用 | 商业API模型 | 稳定性保障 |
按硬件资源选择
硬件配置 | 推荐模型 | 最大参数量 |
---|---|---|
消费级GPU | Qwen2.5-7B, Gemma-7B | 7-13B |
工作站GPU | Qwen-14B, Llama2-13B | 13-30B |
服务器GPU | Qwen-32B, Llama3-70B | 30-70B |
多卡服务器 | Qwen-235B, Llama3.1-405B | 70B+ |
性能优化建议
推理框架选择
量化部署方案
对于资源受限的环境,DB-GPT支持多种量化方案:
- 4-bit量化:大幅减少显存占用
- 8-bit量化:平衡性能与资源
- GGUF格式:llama.cpp专用格式
- AWQ量化:vLLM支持的量化格式
实践案例
企业级多模型部署
# 多模型并行配置示例
[[models.llms]]
name = "qwen-14b-chat"
provider = "hf"
path = "models/qwen-14b-chat"
[[models.llms]]
name = "deepseek-coder"
provider = "proxy/deepseek"
api_key = "${DEEPSEEK_API_KEY}"
[[models.llms]]
name = "openai-gpt4"
provider = "proxy/openai"
api_key = "${OPENAI_API_KEY}"
模型热切换策略
DB-GPT支持基于负载的模型自动切换:
- 基于性能的切换:响应时间超过阈值时切换
- 基于成本的切换:API调用成本控制
- 基于可用性的切换:模型服务健康检查
- 基于业务场景的切换:不同场景使用不同模型
总结
DB-GPT通过其强大的SMMF框架,为开发者提供了前所未有的模型选择灵活性。无论是开源的DeepSeek、Qwen、GLM等60+模型,还是商业API服务,都能在统一的框架下无缝集成和使用。
关键优势:
- 🚀 支持60+主流大语言模型
- 🔧 统一的配置和管理接口
- 📊 智能模型路由和负载均衡
- 💾 本地化和云端部署灵活切换
- 🎯 针对不同场景的优化建议
通过合理的模型选择和配置,开发者可以在DB-GPT框架上构建出高性能、低成本、易维护的AI原生数据应用。
下一步行动:
- 根据硬件资源选择合适的模型规模
- 参考配置示例进行模型部署
- 利用多模型能力实现业务场景优化
- 持续关注新模型的支持情况
DB-GPT的模型生态仍在不断扩展中,建议定期查看官方文档获取最新的模型支持信息。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考