SynPred 开源项目安装与使用指南
SynPred 是一个专为预测癌症中药物组合效果设计的工具,利用不同的协同性指标和集成学习方法。本指南旨在提供详细步骤,帮助用户搭建环境并理解项目的核心组件。
1. 项目目录结构及介绍
SynPred 的项目结构精心组织,以支持其复杂的机器学习流程。以下是关键目录的概览:
- src: 包含所有核心脚本。
pysynpred_*
: 这些Python脚本负责不同的处理阶段,如数据预处理、模型训练、结果合并等。synpred_variables.py
: 定义了项目运行时需要的一些默认参数和路径设置。
- scripts: 可能包含一些示例脚本或辅助脚本用于部署或测试。
- standalone_results: 执行独立部署后,计算出的特征和结果将存放于此。
- docs: 一般用于存放项目文档,但在此引用中未具体提及。
- example: 可能包含示例输入文件(如
standalone_example.csv
),供用户参考正确的数据格式。
2. 项目的启动文件介绍
独立部署模式
- 主要命令:
这个命令用于基于提供的表格(python standalone_deploy_model py your_table_name csv
your_table_name.csv
)启动独立部署流程。用户需确保在Conda环境激活的状态下执行此命令。
全流程部署
全流程涉及更多自定义配置和脚本调用,通常包括但不限于调用syntax_variables.py
中的配置并按顺序执行多个脚本。
3. 项目的配置文件介绍
-
synpred_variables.py
: 此文件扮演配置中心的角色,用户应当在这里修改关键变量,比如更改DEFAULT_LOCATION
来指向存储模型和中间数据的地方。这个文件允许用户定制化模型训练和评估的环境,确保能够适应不同的开发和生产环境需求。 -
环境配置: 虽不严格意义上的配置文件,但创建Conda环境 (
conda create --name synpred_env python=3.8.2
) 和随后的激活步骤对于项目运行至关重要。此外,环境中特定包的选择和版本也是项目配置的一部分。
注意事项
- 确保所有操作都在激活后的
synpred_env
环境中进行。 - 避免在不同输入表上运行脚本时覆盖预测结果。
- 根据需要调整
synpred_variables.py
中的设置,以匹配你的数据路径和模型要求。
通过遵循上述指南,用户可以顺利地搭建SynPred环境,并开始探索其强大的药物组合效应预测能力。记得检查最新文档或GitHub仓库中的更新,因为依赖项和推荐实践可能会随时间而变化。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考