Fun-Rec项目:推荐系统中的数据分析方法与实战

Fun-Rec项目:推荐系统中的数据分析方法与实战

引言

在推荐系统开发中,数据分析是构建高效推荐模型的基础环节。通过深入分析用户行为数据、物品属性以及交互特征,我们能够发现数据中隐藏的模式和规律,为后续的特征工程和模型选择提供重要依据。本文将基于Fun-Rec项目中的实际案例,详细介绍推荐系统数据分析的全流程方法。

一、数据分析的核心价值

推荐系统中的数据分析主要关注三个维度:

  1. 用户维度:分析用户基本属性和行为特征
  2. 物品维度:分析物品内容属性和流行度特征
  3. 交互维度:分析用户与物品的交互模式

通过这三个维度的分析,我们能够:

  • 理解数据分布特征
  • 发现潜在的数据问题
  • 识别重要的特征关系
  • 为召回策略提供依据
  • 指导特征工程方向

二、数据准备与预处理

2.1 数据加载

我们使用Pandas加载三种核心数据:

import pandas as pd

# 用户点击日志
trn_click = pd.read_csv('train_click_log.csv')
tst_click = pd.read_csv('testA_click_log.csv')

# 文章信息
item_df = pd.read_csv('articles.csv')
item_emb_df = pd.read_csv('articles_emb.csv')

2.2 数据预处理

关键预处理步骤包括:

  1. 时间戳排序:计算用户点击的时间顺序
trn_click['rank'] = trn_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False)
  1. 点击次数统计:计算用户总点击量
trn_click['click_cnts'] = trn_click.groupby(['user_id'])['click_timestamp'].transform('count')

三、数据探索性分析

3.1 用户行为分析

3.1.1 点击分布特征

通过可视化分析用户点击行为的分布:

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(15, 20))
for i, col in enumerate(['click_environment', 'click_deviceGroup', 'click_os']):
    plt.subplot(3, 1, i+1)
    sns.countplot(x=col, data=trn_click)
    plt.title(f'Distribution of {col}')
plt.tight_layout()

分析发现:

  • 97.6%的点击发生在环境4
  • 设备1占比60.4%,设备3占比36%
  • 操作系统分布呈现明显长尾
3.1.2 用户活跃度
user_click_count = trn_click.groupby('user_id').size().sort_values(ascending=False)
plt.plot(user_click_count.values)

关键发现:

  • 前50名用户点击量>100次(活跃用户)
  • 约25%用户点击量≤2次(非活跃用户)

3.2 物品特征分析

3.2.1 文章流行度
item_popularity = trn_click['click_article_id'].value_counts()
plt.plot(item_popularity.values)

分析结果:

  • 前100篇文章点击量>1000次(热门内容)
  • 约3500篇文章点击量≤2次(冷门内容)
3.2.2 内容属性
# 文章类别分布
item_df['category_id'].hist(bins=50)

# 文章字数分布
item_df['words_count'].describe()

发现:

  • 共461个文章主题,分布极不均衡
  • 平均字数237字,标准差154,存在较大差异

3.3 交互模式分析

3.3.1 共现分析
# 计算文章共现次数
tmp = trn_click.sort_values('click_timestamp')
tmp['next_item'] = tmp.groupby('user_id')['click_article_id'].shift(-1)
co_occurrence = tmp.groupby(['click_article_id','next_item']).size().reset_index(name='count')

发现:

  • 平均共现次数2.88
  • 最高共现达1687次
  • 约7万对文章至少共现1次
3.3.2 时间模式
# 计算用户点击时间间隔
trn_click['time_diff'] = trn_click.groupby('user_id')['click_timestamp'].diff().abs()
mean_diff = trn_click.groupby('user_id')['time_diff'].mean()
plt.plot(sorted(mean_diff.values, reverse=True))

发现不同用户的时间间隔模式差异显著,可反映用户活跃程度。

四、关键分析发现与建议

4.1 重要发现总结

  1. 用户差异

    • 活跃用户与非活跃用户行为差异显著
    • 用户设备、环境特征相对稳定
    • 用户兴趣广度差异明显
  2. 内容特征

    • 文章流行度呈现典型的长尾分布
    • 文章主题和字数差异显著
  3. 交互模式

    • 用户倾向于连续浏览相关内容
    • 时间间隔模式具有用户特异性

4.2 特征工程建议

基于分析结果,建议构建以下特征:

  1. 用户特征

    • 活跃度等级(基于点击量)
    • 设备偏好特征
    • 兴趣广度(基于浏览类别数)
  2. 物品特征

    • 流行度指标
    • 内容属性(字数、类别)
    • 时效性特征
  3. 交互特征

    • 共现频率
    • 浏览时间模式
    • 内容相似度序列

五、进阶分析技巧

5.1 嵌入向量分析

利用文章嵌入向量分析内容相似度:

from sklearn.preprocessing import normalize

emb_matrix = normalize(item_emb_df.values)
similarities = emb_matrix.dot(emb_matrix.T)

# 分析用户浏览序列相似度
def analyze_user_sim(user_df):
    items = user_df['click_article_id'].values
    sim_seq = [similarities[items[i], items[i+1]] for i in range(len(items)-1)]
    return np.mean(sim_seq)

5.2 时间序列分析

# 分析用户活跃时段
trn_click['hour'] = pd.to_datetime(trn_click['click_timestamp'], unit='ms').dt.hour
user_hour_pattern = trn_click.groupby(['user_id', 'hour']).size().unstack().fillna(0)

六、总结与建议

通过系统化的数据分析,我们获得了对推荐系统数据集的深入理解。在实际项目中,建议:

  1. 建立定期数据分析机制,监控数据分布变化
  2. 将分析结果文档化,指导特征迭代
  3. 结合业务场景解读数据现象
  4. 在模型效果瓶颈时,重新审视数据分析

数据分析不是一次性的工作,而应该贯穿推荐系统开发的整个生命周期。通过持续的数据观察和分析,我们能够不断优化推荐效果,提升用户体验。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒙斐芝Toby

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值