Fun-Rec项目:推荐系统中的数据分析方法与实战
引言
在推荐系统开发中,数据分析是构建高效推荐模型的基础环节。通过深入分析用户行为数据、物品属性以及交互特征,我们能够发现数据中隐藏的模式和规律,为后续的特征工程和模型选择提供重要依据。本文将基于Fun-Rec项目中的实际案例,详细介绍推荐系统数据分析的全流程方法。
一、数据分析的核心价值
推荐系统中的数据分析主要关注三个维度:
- 用户维度:分析用户基本属性和行为特征
- 物品维度:分析物品内容属性和流行度特征
- 交互维度:分析用户与物品的交互模式
通过这三个维度的分析,我们能够:
- 理解数据分布特征
- 发现潜在的数据问题
- 识别重要的特征关系
- 为召回策略提供依据
- 指导特征工程方向
二、数据准备与预处理
2.1 数据加载
我们使用Pandas加载三种核心数据:
import pandas as pd
# 用户点击日志
trn_click = pd.read_csv('train_click_log.csv')
tst_click = pd.read_csv('testA_click_log.csv')
# 文章信息
item_df = pd.read_csv('articles.csv')
item_emb_df = pd.read_csv('articles_emb.csv')
2.2 数据预处理
关键预处理步骤包括:
- 时间戳排序:计算用户点击的时间顺序
trn_click['rank'] = trn_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False)
- 点击次数统计:计算用户总点击量
trn_click['click_cnts'] = trn_click.groupby(['user_id'])['click_timestamp'].transform('count')
三、数据探索性分析
3.1 用户行为分析
3.1.1 点击分布特征
通过可视化分析用户点击行为的分布:
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(15, 20))
for i, col in enumerate(['click_environment', 'click_deviceGroup', 'click_os']):
plt.subplot(3, 1, i+1)
sns.countplot(x=col, data=trn_click)
plt.title(f'Distribution of {col}')
plt.tight_layout()
分析发现:
- 97.6%的点击发生在环境4
- 设备1占比60.4%,设备3占比36%
- 操作系统分布呈现明显长尾
3.1.2 用户活跃度
user_click_count = trn_click.groupby('user_id').size().sort_values(ascending=False)
plt.plot(user_click_count.values)
关键发现:
- 前50名用户点击量>100次(活跃用户)
- 约25%用户点击量≤2次(非活跃用户)
3.2 物品特征分析
3.2.1 文章流行度
item_popularity = trn_click['click_article_id'].value_counts()
plt.plot(item_popularity.values)
分析结果:
- 前100篇文章点击量>1000次(热门内容)
- 约3500篇文章点击量≤2次(冷门内容)
3.2.2 内容属性
# 文章类别分布
item_df['category_id'].hist(bins=50)
# 文章字数分布
item_df['words_count'].describe()
发现:
- 共461个文章主题,分布极不均衡
- 平均字数237字,标准差154,存在较大差异
3.3 交互模式分析
3.3.1 共现分析
# 计算文章共现次数
tmp = trn_click.sort_values('click_timestamp')
tmp['next_item'] = tmp.groupby('user_id')['click_article_id'].shift(-1)
co_occurrence = tmp.groupby(['click_article_id','next_item']).size().reset_index(name='count')
发现:
- 平均共现次数2.88
- 最高共现达1687次
- 约7万对文章至少共现1次
3.3.2 时间模式
# 计算用户点击时间间隔
trn_click['time_diff'] = trn_click.groupby('user_id')['click_timestamp'].diff().abs()
mean_diff = trn_click.groupby('user_id')['time_diff'].mean()
plt.plot(sorted(mean_diff.values, reverse=True))
发现不同用户的时间间隔模式差异显著,可反映用户活跃程度。
四、关键分析发现与建议
4.1 重要发现总结
-
用户差异:
- 活跃用户与非活跃用户行为差异显著
- 用户设备、环境特征相对稳定
- 用户兴趣广度差异明显
-
内容特征:
- 文章流行度呈现典型的长尾分布
- 文章主题和字数差异显著
-
交互模式:
- 用户倾向于连续浏览相关内容
- 时间间隔模式具有用户特异性
4.2 特征工程建议
基于分析结果,建议构建以下特征:
-
用户特征:
- 活跃度等级(基于点击量)
- 设备偏好特征
- 兴趣广度(基于浏览类别数)
-
物品特征:
- 流行度指标
- 内容属性(字数、类别)
- 时效性特征
-
交互特征:
- 共现频率
- 浏览时间模式
- 内容相似度序列
五、进阶分析技巧
5.1 嵌入向量分析
利用文章嵌入向量分析内容相似度:
from sklearn.preprocessing import normalize
emb_matrix = normalize(item_emb_df.values)
similarities = emb_matrix.dot(emb_matrix.T)
# 分析用户浏览序列相似度
def analyze_user_sim(user_df):
items = user_df['click_article_id'].values
sim_seq = [similarities[items[i], items[i+1]] for i in range(len(items)-1)]
return np.mean(sim_seq)
5.2 时间序列分析
# 分析用户活跃时段
trn_click['hour'] = pd.to_datetime(trn_click['click_timestamp'], unit='ms').dt.hour
user_hour_pattern = trn_click.groupby(['user_id', 'hour']).size().unstack().fillna(0)
六、总结与建议
通过系统化的数据分析,我们获得了对推荐系统数据集的深入理解。在实际项目中,建议:
- 建立定期数据分析机制,监控数据分布变化
- 将分析结果文档化,指导特征迭代
- 结合业务场景解读数据现象
- 在模型效果瓶颈时,重新审视数据分析
数据分析不是一次性的工作,而应该贯穿推荐系统开发的整个生命周期。通过持续的数据观察和分析,我们能够不断优化推荐效果,提升用户体验。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考