项目推荐:连续手语识别的视觉对齐约束
1. 项目基础介绍与主要编程语言
该项目名为“VAC_CSLR”,是针对连续手语识别(Continuous Sign Language Recognition, CSLR)的视觉对齐约束方法的研究实现。该项目旨在通过引入视觉对齐约束,提高连续手语识别的准确性。项目主要使用Python编程语言开发,并在PyTorch框架上实现了相关算法。
2. 项目核心功能
项目的核心功能包括:
- 视觉对齐约束:通过引入视觉对齐约束,使模型能够更好地理解手语表达中的视觉动态信息,从而提高识别的准确度。
- 连续手语识别:使用深度学习模型对手语视频进行帧级特征提取,并将提取的特征转换为手语符号序列。
- 模型训练与评估:提供了基于RWTH-PHOENIX-Weather 2014数据集的模型训练和评估工具,可以方便地训练和测试模型性能。
3. 项目最近更新的功能
项目最近的更新主要包括以下几个方面:
- 训练稳定性改进:在多GPU训练时,采用了syncBN(同步批量归一化)来确保不同设备上的统计信息同步更新,从而提高了训练的稳定性。
- 训练周期调整:将训练周期缩短至40个epoch,同时提供了相应的实验结果。
- 模型性能提升:更新后的模型在手语识别的准确度上有所提升,具体表现在WER(Word Error Rate)的降低。
这些更新使得模型在连续手语识别领域更具竞争力,同时也为相关研究提供了更加稳定和高效的工具。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考