EleutherAI语言模型评估框架任务配置详解

EleutherAI语言模型评估框架任务配置详解

前言

EleutherAI语言模型评估框架是一个高度可扩展的评估系统,它通过YAML配置文件定义各类评估任务。本文将深入解析该框架的任务配置机制,帮助开发者快速掌握如何创建自定义评估任务。

核心概念

YAML配置文件

该框架采用YAML作为任务定义的主要方式,这种设计具有以下优势:

  1. 可复现性:配置文件与代码库提交哈希结合,确保评估设置可精确复现
  2. 灵活性:支持从简单数据集替换到复杂评估逻辑的各种场景
  3. 可读性:结构化配置便于理解和修改

任务配置详解

基础配置参数

任务标识部分

  • task:任务唯一名称(必填)
  • task_alias:结果表中显示的别名
  • tag:任务标签,用于批量执行同类任务

数据集配置

  • dataset_path:Hugging Face数据集路径
  • dataset_name:数据集子任务名称
  • dataset_kwargs:数据集加载额外参数
  • custom_dataset:自定义数据集加载函数
  • 各类split配置:训练/验证/测试/少样本划分

提示工程配置

  • use_prompt:使用预定义提示模板
  • description:任务描述模板
  • doc_to_text:样本转输入文本的模板/函数
  • doc_to_target:样本转目标输出的模板/函数
  • doc_to_choice:多选题选项处理
  • 各类分隔符配置:样本间/输入输出间分隔符

运行时配置

  • num_fewshot:少样本示例数量
  • batch_size:批处理大小
  • output_type:输出类型(生成/似然/多选题等)
  • generation_kwargs:生成参数
  • repeats:重复运行次数(用于自洽性评估等)

评估指标配置

  • metric_list:评估指标列表
  • should_decontaminate:是否去污染
  • doc_to_decontamination_query:去污染查询

高级功能解析

过滤器系统

过滤器是框架的核心组件,用于对模型输出进行后处理。其工作流程如下:

  1. 模型生成原始响应(存储在Instance.resps中)
  2. 过滤器接收List[List[响应]]结构
  3. 处理后返回List[处理后响应]
  4. 结果存入Instance.filtered_resps

典型过滤器类型

  • 正则提取(regex)
  • 取首个结果(take_first)
  • 多数投票(majority_vote)
  • 取前K个(take_first_k)

多过滤器管道

框架支持为同一任务配置多个独立的过滤器管道,例如在GSM8K数学题评估中:

  1. score-first管道

    • 正则提取答案数字
    • 取第一个结果
  2. maj@N管道

    • 正则提取所有N个答案
    • 多数投票
    • 取最终结果
  3. maj@M管道

    • 取前M个结果
    • 正则提取
    • 多数投票

自定义过滤器开发

开发者可以通过装饰器注册自定义过滤器:

from lm_eval.api.filter import Filter
from lm_eval.api.registry import register_filter

@register_filter("new_filter")
class NewFilter(Filter):
    # 实现过滤逻辑

评估指标系统

内置指标

框架提供丰富的内置评估指标:

基础指标

  • 准确率(acc/acc_norm)
  • 困惑度(perplexity)
  • F1分数
  • BLEU等文本匹配指标

聚合方式

  • 平均值(mean)
  • 中位数(median)
  • 加权困惑度等

自定义指标开发

添加新指标需要三个步骤:

  1. 注册指标函数
@register_metric(metric="mcc", higher_is_better=True)
def mcc_fn(items): return items
  1. 注册聚合函数
@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    golds, preds = zip(*items)
    return sklearn.metrics.matthews_corrcoef(golds, preds)
  1. 更新Task定义

最佳实践

YAML模板继承

可以通过include指令复用基础配置:

include: base_template.yaml
# 覆盖特定配置
doc_to_text: "修改后的模板"

参考实现

  • 多选题:SciQ任务
  • 生成任务:GSM8K数学题
  • 复杂过滤:GSM8K思维链自洽评估

结语

EleutherAI评估框架通过灵活的YAML配置和强大的过滤器系统,支持从简单到复杂的各类语言模型评估需求。掌握本文介绍的核心概念和高级功能后,开发者可以高效地创建自定义评估任务,推动语言模型研究的可复现性和可比性。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解佳岭Farley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值