MariaDB 11.0 优化器成本模型深度解析
背景介绍
MariaDB 11.0 对优化器成本模型进行了重大改进,将基本成本单位从传统的"磁盘寻道时间"转变为更精确的"毫秒级时间单位"。这一改变使得优化器能够更准确地评估不同查询计划的执行成本,从而选择最优的执行路径。
测试环境与方法
测试基于以下硬件配置:
- CPU: Intel Xeon W-2295 @ 3.00GHz
- 内存: 256GB
- 存储: Samsung SSD 860
- 测试数据量: 100万行
测试方法特点:
- 每个测试运行3次(首次预热缓存,后两次取平均值)
- 所有数据都在内存中(MyISAM行数据除外)
- 设置 optimizer_disk_read_ratio=0 反映内存访问场景
- 关闭 index_condition_pushdown 以减少干扰因素
核心成本参数详解
行操作成本
ROW_COPY_COST 和 ROW_LOOKUP_COST 是行操作的两个基本成本:
- ROW_COPY_COST: 将行数据复制到上层结构的成本
- ROW_LOOKUP_COST: 查找行数据的成本
对于HEAP表(纯内存表)的测试表明:
- 行查找成本:约 8.0166e-06 毫秒
- 行复制成本:约 2.0042e-06 毫秒
键操作成本
KEY_COPY_COST 和 KEY_NEXT_FIND_COST 是索引操作的关键参数:
- KEY_COPY_COST: 复制键数据的成本
- KEY_NEXT_FIND_COST: 查找下一个键的成本
测试发现键复制成本约占键操作总成本的15.77%,这一比例在不同存储引擎中保持相对稳定。
WHERE条件成本
通过基准测试计算得出:
- 简单WHERE条件成本:约0.032毫秒/条件
- 复杂WHERE条件成本略高
这一成本反映了条件评估的CPU开销,对于查询优化器选择索引还是全表扫描至关重要。
存储引擎特定成本分析
HEAP引擎(内存表)
-
表扫描:
- 纯内存操作,成本最低
- 行查找占80%时间,行复制占20%
-
索引扫描:
- 仅支持二叉树索引
- 键查找成本约0.000077毫秒/行
-
等值引用(EQ_REF):
- 哈希索引查找成本约0.00016毫秒/行
- 二叉树查找成本约0.000226毫秒/行
Aria引擎
-
表扫描:
- 块复制成本约0.0356毫秒/块
- 行复制成本约0.000061毫秒/行
- 行查找成本约0.000046毫秒/行
-
索引扫描:
- 键查找成本约0.000082毫秒/键
- 键复制成本约0.000016毫秒/键
-
范围扫描:
- 结合索引扫描和行查找
- 行查找成本约0.000131毫秒/行
-
等值引用:
- 键查找成本约0.000436毫秒/键
MyISAM引擎
-
表扫描:
- 依赖文件系统缓存
- 行查找成本约0.000064毫秒/行
-
索引扫描:
- 块大小通常为4KB
- 索引块复制成本与Aria类似
优化器成本模型的意义
- 更精确的计划选择:毫秒级精度使优化器能更好地区分相近成本的计划
- 硬件适应性:通过参数调整可适应不同硬件配置
- 存储引擎差异:准确反映不同引擎的特性差异
- 未来扩展性:模块化设计便于添加新成本因素
实际应用建议
- 对于内存表(HEAP),优化器会优先考虑全表扫描
- Aria引擎的索引访问成本显著低于行访问成本
- MyISAM由于不缓存行数据,行访问成本较高
- 复杂WHERE条件可能使全表扫描成本高于索引扫描
通过理解这些成本参数,DBA可以更好地设计表结构和索引,编写优化器友好的SQL语句,从而提升数据库整体性能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考