SphereFace 技术文档
1. 安装指南
环境要求
- Python 3.6 或更高版本
- PyTorch 1.0 或更高版本
- CUDA 9.0 或更高版本(如果使用GPU)
安装步骤
-
克隆项目仓库:
git clone https://github.com/yourusername/SphereFace.git cd SphereFace
-
安装依赖:
pip install -r requirements.txt
-
下载预训练模型(可选): 你可以从项目提供的链接下载预训练模型,并将其放置在
model
目录下。
2. 项目的使用说明
训练模型
要开始训练模型,请运行以下命令:
python train.py
训练过程中,模型会自动保存到 model
目录下。
测试模型
在测试之前,你需要将 lfw.tgz
文件解压并打包为 lfw.zip
:
tar zxf lfw.tgz; cd lfw; zip -r ../lfw.zip *; cd ..
然后运行以下命令进行测试:
python lfw_eval.py --model model/sphere20a_20171020.pth
预训练模型
项目提供了预训练模型,你可以直接使用这些模型进行测试或进一步训练。预训练模型的详细信息如下:
| 模型名称 | LFW 准确率 | 训练数据集 | |-------------------|------------|--------------| | sphere20a_20171020 | 0.9922 | CASIA-WebFace|
3. 项目API使用文档
训练API
def train(model, optimizer, criterion, train_loader, device):
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
测试API
def test(model, test_loader, device):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return 100 * correct / total
4. 项目安装方式
从源码安装
-
克隆仓库:
git clone https://github.com/yourusername/SphereFace.git cd SphereFace
-
安装依赖:
pip install -r requirements.txt
-
运行项目:
python train.py
使用预训练模型
-
下载预训练模型: 从项目提供的链接下载预训练模型,并将其放置在
model
目录下。 -
运行测试:
python lfw_eval.py --model model/sphere20a_20171020.pth
通过以上步骤,你可以顺利安装并使用 SphereFace 项目进行人脸识别任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考