SphereFace 技术文档

SphereFace 技术文档

1. 安装指南

环境要求

  • Python 3.6 或更高版本
  • PyTorch 1.0 或更高版本
  • CUDA 9.0 或更高版本(如果使用GPU)

安装步骤

  1. 克隆项目仓库

    git clone https://github.com/yourusername/SphereFace.git
    cd SphereFace
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 下载预训练模型(可选): 你可以从项目提供的链接下载预训练模型,并将其放置在 model 目录下。

2. 项目的使用说明

训练模型

要开始训练模型,请运行以下命令:

python train.py

训练过程中,模型会自动保存到 model 目录下。

测试模型

在测试之前,你需要将 lfw.tgz 文件解压并打包为 lfw.zip

tar zxf lfw.tgz; cd lfw; zip -r ../lfw.zip *; cd ..

然后运行以下命令进行测试:

python lfw_eval.py --model model/sphere20a_20171020.pth

预训练模型

项目提供了预训练模型,你可以直接使用这些模型进行测试或进一步训练。预训练模型的详细信息如下:

| 模型名称 | LFW 准确率 | 训练数据集 | |-------------------|------------|--------------| | sphere20a_20171020 | 0.9922 | CASIA-WebFace|

3. 项目API使用文档

训练API

def train(model, optimizer, criterion, train_loader, device):
    model.train()
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss / len(train_loader)

测试API

def test(model, test_loader, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    return 100 * correct / total

4. 项目安装方式

从源码安装

  1. 克隆仓库

    git clone https://github.com/yourusername/SphereFace.git
    cd SphereFace
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 运行项目

    python train.py
    

使用预训练模型

  1. 下载预训练模型: 从项目提供的链接下载预训练模型,并将其放置在 model 目录下。

  2. 运行测试

    python lfw_eval.py --model model/sphere20a_20171020.pth
    

通过以上步骤,你可以顺利安装并使用 SphereFace 项目进行人脸识别任务。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬佩璇Falkner

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值