【限时免费】 项目实战:用ERNIE-4.5-21B-A3B-Base-PT构建一个智能会议纪要生成器,只需100行代码!...

项目实战:用ERNIE-4.5-21B-A3B-Base-PT构建一个智能会议纪要生成器,只需100行代码!

【免费下载链接】ERNIE-4.5-21B-A3B-Base-PT ERNIE-4.5-21B-A3B 是百度推出的高效混合专家(MoE)语言大模型,总参数量21B,每个token激活3B参数。模型采用创新的异构MoE架构和模态隔离路由技术,在语言理解和生成任务上表现卓越。提供完整的ERNIEKit微调工具链和FastDeploy推理框架,兼容主流生态,适用于智能对话、内容创作等场景。基于Apache 2.0协议开源 【免费下载链接】ERNIE-4.5-21B-A3B-Base-PT 项目地址: https://gitcode.com/paddlepaddle/ERNIE-4.5-21B-A3B-Base-PT

项目构想:我们要做什么?

在现代职场中,会议是日常工作的重要组成部分,但冗长的会议内容往往需要花费大量时间整理成纪要。为了解决这一问题,我们设计了一个基于ERNIE-4.5-21B-A3B-Base-PT的智能会议纪要生成器。该应用的功能如下:

  • 输入:一段会议录音的文本转录(或直接输入会议讨论的文本内容)。
  • 输出:自动生成的会议纪要,包括会议主题、关键讨论点、决策事项以及待办任务。

通过这一工具,用户可以快速获取会议的核心内容,节省大量手动整理的时间。

技术选型:为什么是ERNIE-4.5-21B-A3B-Base-PT?

ERNIE-4.5-21B-A3B-Base-PT是一款强大的开源大语言模型,具有以下核心亮点,非常适合实现我们的项目:

  1. 128k上下文长度:能够处理长文本输入,适合分析会议讨论的完整内容。
  2. 高效的文本生成能力:模型在文本生成任务上表现优异,能够根据输入内容生成结构化的会议纪要。
  3. 多任务支持:模型支持文本摘要、问答等任务,可以灵活应用于会议纪要的生成和提炼。

这些特性使得ERNIE-4.5-21B-A3B-Base-PT成为实现智能会议纪要生成器的理想选择。

核心实现逻辑

项目的核心逻辑分为以下几步:

  1. 输入处理:接收会议文本输入,并进行必要的预处理(如分段、去噪)。
  2. Prompt设计:设计一个有效的Prompt,引导模型生成结构化的会议纪要。例如:
    请根据以下会议讨论内容生成一份会议纪要,包括会议主题、关键讨论点、决策事项和待办任务:
    [会议文本]
    
  3. 模型调用:使用ERNIE-4.5-21B-A3B-Base-PT的API或本地部署模型,传入Prompt和会议文本,生成会议纪要。
  4. 结果后处理:对模型生成的文本进行格式化处理,使其更符合会议纪要的标准格式。

代码全览与讲解

以下是完整的项目代码,基于ERNIE-4.5-21B-A3B-Base-PT的快速上手代码扩展而来:

from transformers import AutoModelForCausalLM, AutoTokenizer

# 加载模型和分词器
model_name = "baidu/ERNIE-4.5-21B-A3B-Base-PT"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

def generate_meeting_summary(meeting_text):
    # 设计Prompt
    prompt = f"""
    请根据以下会议讨论内容生成一份会议纪要,包括会议主题、关键讨论点、决策事项和待办任务:
    {meeting_text}
    """
    
    # 编码输入
    model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(model.device)
    
    # 生成会议纪要
    generated_ids = model.generate(
        model_inputs.input_ids,
        max_new_tokens=1024,
        temperature=0.7,
        top_p=0.9
    )
    
    # 解码输出
    summary = tokenizer.decode(generated_ids[0].tolist(), skip_special_tokens=True)
    return summary

# 示例输入
meeting_text = """
会议主题:项目进度汇报
讨论内容:
1. 开发团队汇报了当前模块的开发进度,预计下周完成。
2. 测试团队提出了一些性能问题,需要开发团队优化。
3. 产品经理确认了下一次迭代的需求优先级。
决策事项:
1. 开发团队将在本周内解决测试团队提出的性能问题。
2. 产品经理将在明天发布最终的需求文档。
待办任务:
1. 开发团队优化性能问题。
2. 产品经理完成需求文档。
"""

# 生成会议纪要
summary = generate_meeting_summary(meeting_text)
print("生成的会议纪要:\n", summary)

代码讲解

  1. 模型加载:使用transformers库加载ERNIE-4.5-21B-A3B-Base-PT模型和分词器。
  2. Prompt设计:通过拼接会议文本和指令,生成一个清晰的Prompt,引导模型完成任务。
  3. 文本生成:调用模型的generate方法生成会议纪要,参数temperaturetop_p用于控制生成文本的多样性。
  4. 结果输出:解码生成的文本并返回。

效果展示与功能扩展

效果展示

假设输入上述示例会议文本,生成的会议纪要可能如下:

会议主题:项目进度汇报
关键讨论点:
- 开发团队汇报了当前模块的开发进度,预计下周完成。
- 测试团队提出了一些性能问题,需要开发团队优化。
- 产品经理确认了下一次迭代的需求优先级。
决策事项:
- 开发团队将在本周内解决测试团队提出的性能问题。
- 产品经理将在明天发布最终的需求文档。
待办任务:
- 开发团队优化性能问题。
- 产品经理完成需求文档。

功能扩展

  1. 多语言支持:通过调整Prompt,支持生成其他语言的会议纪要。
  2. 语音输入集成:结合语音识别API,直接从会议录音生成纪要。
  3. 自定义模板:允许用户自定义会议纪要的格式和内容字段。

【免费下载链接】ERNIE-4.5-21B-A3B-Base-PT ERNIE-4.5-21B-A3B 是百度推出的高效混合专家(MoE)语言大模型,总参数量21B,每个token激活3B参数。模型采用创新的异构MoE架构和模态隔离路由技术,在语言理解和生成任务上表现卓越。提供完整的ERNIEKit微调工具链和FastDeploy推理框架,兼容主流生态,适用于智能对话、内容创作等场景。基于Apache 2.0协议开源 【免费下载链接】ERNIE-4.5-21B-A3B-Base-PT 项目地址: https://gitcode.com/paddlepaddle/ERNIE-4.5-21B-A3B-Base-PT

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值