microeco包与LEfSe分析结果差异解析及优化方案

microeco包与LEfSe分析结果差异解析及优化方案

背景介绍

microeco是一个强大的R语言微生物组分析工具包,它整合了多种微生物组数据分析方法,其中包括LEfSe(Linear discriminant analysis Effect Size)分析功能。LEfSe是一种广泛用于微生物组数据差异分析的算法,能够识别不同分组间具有统计学显著差异的生物标记物。

问题发现

用户在使用microeco包进行LEfSe分析时,发现与原始LEfSe软件包(Python版本)的结果存在两个主要差异:

  1. LDA值(线性判别分析得分)大小不一致,microeco计算得到的LDA值普遍偏大
  2. 部分物种的富集方向(在哪个组别中富集)与Python版本结果相反

原因分析

经过深入调查,发现造成这些差异的主要原因如下:

1. 数据标准化处理差异

在原始LEfSe软件中,使用format_input.py脚本时通过-o 1000000参数指定了标准化后的最大值不超过1,000,000。而microeco包内部默认也是将丰度乘以1,000,000进行标准化,但处理逻辑有所不同:

  • 当输入数据已经是百分比形式(0-100范围)时,microeco直接读取这些值作为相对丰度
  • 而LEfSe的Python版本会先将输入数据转换为0-1范围的相对丰度,再乘以1,000,000

2. 中位数与均值比较的差异

对于某些低丰度物种,当在两个组别中的中位数都为0时,microeco的比较结果可能出现混乱(可能依赖于组别顺序)。而LEfSe的Python版本在这种情况下可能更倾向于使用均值进行比较。

解决方案

针对上述问题,microeco提供了两种解决方案:

方案一:数据读取时进行标准化

在调用mpa2meco函数时,设置rel = TRUE参数,将输入数据转换为0-1范围的相对丰度:

ds_comp <- mpa2meco("abundance_table.txt", 
                   sample_table = "group.txt", 
                   rel = TRUE, 
                   auto_tidy = TRUE)

方案二:调整LEfSe标准化参数

lefse_norm参数从默认的1,000,000调整为10,000:

ds_comp <- mpa2meco("abundance_table.txt", 
                   sample_table = "group.txt", 
                   auto_tidy = TRUE)
lefse_res <- trans_diff$new(dataset = ds_comp, 
                          lefse_norm = 10000,
                          method = "lefse", 
                          p_adjust_method = "none", 
                          alpha = 0.05,
                          group = "group", 
                          remove_unknown = F)

最佳实践建议

  1. 参数一致性:为了与LEfSe Python版本结果一致,建议同时采用以下设置:

    • lefse_norm = 10000
    • p_adjust_method = "none"
    • alpha = 0.05
  2. 低丰度物种处理:对于中位数都为0的物种,建议结合生物学意义和其他统计指标综合判断其重要性。

  3. 结果验证:对于关键物种的富集方向,建议通过可视化方法(如箱线图)验证其在不同组别中的分布模式。

未来优化方向

microeco开发团队已注意到这些问题,并计划在后续版本中:

  1. 优化lefse_norm参数的默认值,使其更符合LEfSe原始实现
  2. 改进中位数比较逻辑,特别是对于全零情况的处理
  3. 增加更多结果验证和可视化功能,方便用户交叉验证分析结果

结论

通过理解microeco与LEfSe Python版本在数据标准化和统计比较方法上的差异,用户可以更准确地解释分析结果,并根据研究需求选择合适的参数设置。microeco团队将持续优化这一功能,为用户提供更可靠、更一致的微生物组差异分析工具。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施琳涓Una

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值