Milvus 安装和配置指南

Milvus 安装和配置指南

1. 项目基础介绍和主要编程语言

基础介绍

Milvus 是一个开源的向量数据库,专为嵌入相似性搜索和 AI 应用而设计。它能够处理大规模的高维向量数据,提供毫秒级的搜索延迟,适用于图像搜索、推荐系统、聊天机器人等多种应用场景。

主要编程语言

Milvus 主要使用 Go 语言进行开发,同时也涉及到 C++ 和 Python 等语言。

2. 项目使用的关键技术和框架

关键技术

  • 向量相似性搜索:Milvus 的核心功能,支持高效的向量相似性搜索。
  • 分布式架构:Milvus 2.0 采用了云原生架构,存储和计算分离,所有组件都是无状态的,增强了弹性和灵活性。
  • 多维向量支持:从 Milvus 2.4 开始,支持多维向量和混合搜索框架。

框架

  • Go 语言:主要开发语言。
  • C++:用于高性能计算部分。
  • Python:用于脚本和部分工具的开发。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

在开始安装之前,请确保您的系统满足以下要求:

Linux 系统
  • Ubuntu 20.04 或更高版本
  • Go 版本 >= 1.21
  • CMake 版本 >= 3.26.4
  • GCC 版本 9.5
  • Python 版本 > 3.8 且 <= 3.11
MacOS 系统
  • Big Sur 11.5 或更高版本(x86_64)
  • Monterey 12.0.1 或更高版本(Apple Silicon)
  • Go 版本 >= 1.21
  • CMake 版本 >= 3.26.4
  • LLVM 版本 >= 15
  • Python 版本 > 3.8 且 <= 3.11

详细安装步骤

1. 克隆 Milvus 仓库

首先,从 GitHub 克隆 Milvus 仓库到本地:

git clone https://github.com/milvus-io/milvus.git
2. 安装第三方依赖

进入 Milvus 目录并安装所需的第三方依赖:

cd milvus
./scripts/install_deps.sh
3. 编译 Milvus

安装完依赖后,编译 Milvus:

make
4. 启动 Milvus

编译完成后,您可以通过以下命令启动 Milvus:

./bin/milvus

配置

Milvus 的配置文件位于 configs 目录下,您可以根据需要修改配置文件以适应您的环境。

验证安装

启动 Milvus 后,您可以通过访问默认的 API 端点来验证安装是否成功。默认情况下,Milvus 运行在 localhost:19530

总结

通过以上步骤,您已经成功安装并配置了 Milvus 向量数据库。Milvus 的高性能和灵活性使其成为处理大规模向量数据的理想选择。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### Milvus 安装指南 Milvus 提供了多种安装方式,适用于不同的场景需求。以下是几种常见的安装方法及其适用范围: #### 1. 使用 Helm 安装 Milvus Operator 对于希望在 Kubernetes 集群中部署管理 Milvus 的用户,可以使用 Milvus Operator 来简化这一过程。通过 Helm 安装 Milvus Operator 能够显著降低复杂度并提高效率[^1]。 ```bash helm repo add milvus https://zilliz.com/helm-charts helm install my-milvus milvus/milvus --version {chart-version} ``` 以上命令会将指定版本的 Milvus 部署到 Kubernetes 集群中。 --- #### 2. Docker 单机版安装 如果目标是在单台机器上快速启动 Milvus,则可以通过 Docker 运行官方镜像来实现。这种方法适合测试环境或小型应用。 ```bash docker pull milvusdb/milvus:v{version} # 替换为所需版本号 docker run -d --name milvus_cpu -p 19530:19530 -p 8080:8080 \ -v /path/to/data:/var/lib/milvus milvusdb/milvus:v{version} ``` 此方法简单快捷,无需额外配置即可完成基本功能验证[^4]。 --- #### 3. Milvus Lite (Python 库) 针对资源受限的设备或者需要快速原型设计的情况,可以选择 Milvus Lite。这是一种轻量化的 Python 库形式,可以直接嵌入到应用程序中而不需要单独的服务进程[^3]。 ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection connections.connect("default", host="localhost", port="19530") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128) ] schema = CollectionSchema(fields, "example_collection") collection = Collection(name="example", schema=schema) print(f"Collection created successfully: {collection.name}") ``` 注意:尽管 Milvus Lite 功能强大,但它仅限于本地运行且不支持分布式扩展[^3]。 --- #### 4. 源码编译安装 当需要自定义修改源代码或探索最新特性时,可以从 GitHub 上克隆仓库并通过源码构建 Milvus。这通常涉及 Go、C++ Python 环境的搭建以及依赖项解决[^5]。 ```bash git clone https://github.com/milvus-io/milvus.git cd milvus make build ./build/scripts/run_server.sh ``` 这种方式较为复杂,建议具备一定开发经验后再尝试。 --- ### 总结 根据实际需求选择合适的安装方案非常重要。Kubernetes 用户推荐采用 **Helm Chart**;追求便捷性的开发者可选用 **Docker 单机版** 或者直接集成 **Milvus Lite** 到项目里;而对于高级定制化则需考虑基于源码的方式进行二次开发[^1][^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王民坦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值