深度学习中的混合最优微调方法:助力帕金森病早期诊断
1. 引言
在医学诊断领域,准确识别早期帕金森病(EPD)对于患者的治疗和康复至关重要。深度学习中的卷积神经网络(CNNs)为区分帕金森病患者和健康个体提供了强大的工具。本文将介绍一种基于混合最优微调(HOF 调优)的方法,旨在提高早期帕金森病诊断的准确性。
2. 相关研究回顾
此前已有众多学者针对帕金森病的诊断提出了不同的方法:
- Choi 等人使用 PDnet 提出了一种 SPECT 图像的解释技术,在帕金森病分类中表现出了可观的准确性。
- Kevin H. Leung 等人采用三阶段深度学习集成方法,结合 SPECT 图像的时空特征、临床运动评分的时间特征和其他临床指标来预测帕金森病。
- Khosro Rezaee 等人利用预训练的深度迁移学习结构和传统机器学习模型,从 sEMG 信号中自动诊断帕金森病,基于混合深度迁移学习的方法命中率超过 99%。
- Yang Y 等人提出了两层堆叠集成学习框架,融合多模态特征,实现了 96.88%的准确率。
- Diego Castillo - Barnes 等人开发了集成分类模型,结合支持向量机(SVM)和线性核分类器,准确率达到 96%。
然而,这些集成技术大多使用回顾性数据,容易出现误分类偏差和过拟合问题。本文提出的系统仅使用 SPECT 图像进行分析,有望解决这些难题。
3. 计算方法
3.1 混合最优微调技术
混合最优微调(HOF 调优)技术用于利用包含 DaTscan 图像切片(VCDIS)的图像诊断帕金森病的早期阶段。这些图