加密货币价格预测与欺诈检测:技术融合解决方案
在当今的金融领域,加密货币以其独特的特性吸引了众多投资者的目光。然而,加密货币市场的价格波动剧烈,且存在着社会工程攻击导致的欺诈风险。本文将介绍两种关键技术,一是利用深度学习进行加密货币价格预测,二是基于集成学习构建加密货币交易的欺诈检测模块。
加密货币价格预测
利用深度学习算法中的双向长短期记忆网络(Bi - LSTM)可以对诸如比特币、卡尔达诺、以太坊和莱特币等加密货币的价格进行高精度预测。该预测模型的价格预测准确率在 95% 至 97% 之间,并且会对其他各种性能指标进行评估。这些预测结果会以图表的形式呈现,并嵌入到网站中,用户可以通过该网站查看预测价格和实时价格。
为确保预测模型的有效性,需要定期更新数据集。可以使用应用程序编程接口(API)来收集数据,或者直接从加密货币交易所获取实时价格数据。
加密货币交易欺诈检测
区块链技术为许多应用提供了一致性、不可变性和多租户支持的账本,但它本身无法自动识别交易是否存在欺诈。如今,社会工程攻击盛行,攻击者常常欺骗加密货币交易者。为解决这一问题,研究人员对多种集成学习、神经网络和机器学习算法进行了研究,以找出最适合的欺诈检测决策算法。
主要贡献
- 模型比较与选择 :比较了多种流行决策模型的性能和评估指标,最终选择了表现最佳的模型。
- 模型训练 :通过超参数调优对选定的模型进行训练。
- 特征降维 :使用卡方检验测量特征与目标变量的相关性