机器学习在数据预测与分析中的应用研究
1. KPCA - LDA - XGB模型解析
1.1 LDA与KPCA原理
LDA(线性判别分析)利用原始数据的类别信息,通过寻求投影变换来增加类间差异和类内相似性,从而高精度地提取有用特征,在特征提取方面表现出色。
KPCA(核主成分分析)是一种非线性特征提取技术,其核心是核函数实现非线性映射。它能在最大程度保留原始数据完整性的前提下完成非线性数据降维,更好地捕捉数据的非线性特征。
1.2 模型构建与训练
为解决青梅pH预测问题,采用KPCA和LDA来减少XGBoost的输入,增强模型的特征提取能力。具体步骤如下:
1. KPCA处理 :利用非线性映射$P: R \to F$将原始输入空间的数据转换到高维特征空间$F$,然后分析特征空间$F$中的证据,选择累积贡献率显著的核主成分构建新数据集。由于不知道$P$的具体形式,需创建核函数$k(x_i, x_j) = P(x_j)P(x_j)$,常见的核函数有线性核函数、多项式核函数、径向基函数核等。
2. LDA处理 :将原始数据转换为训练集样本的线性表示,找到合适的直线$w$,使相似样本的投影点尽可能靠近,异类样本的投影点尽可能远离。
3. XGBoost训练 :
- 步骤1:输入数据。
- 步骤2:将预测值设为0,计算残差。
- 步骤3:将分割的输入特征设为默认值,计算分割前后目标函数的变化。
- 步骤4:检查当前基学习器的深度是否达到最大分割深度。若未达到,确