股票市场预测与半导体基板故障检测模型研究
1 股票市场预测系统
1.1 研究数据
为了进行分析,我们从四个不同的国家(加纳、南非、美国和印度)获取了四个股票数据集。各数据集的特征(所选自变量)数量有所不同,具体信息如下表所示:
| 数据源 | 数据大小 | 特征数量 | 时间范围 |
| — | — | — | — |
| GSE [加纳] | 1100 | 9 | 2012 年 1 月至 2017 年 12 月 |
| NYSE [美国] | 1760 | 15 | 2012 年 1 月 3 日至 2018 年 12 月 |
| JSE | 1749 | 7 | 2012 年 1 月至 2018 年 12 月 |
| BSE [印度] | 984 | 12 | 2015 年 1 月至 2018 年 12 月 |
我们从 2012 年 1 月到 2018 年 12 月从 GSE、JSE、NYSE 和 BSE 获取市场指数,用于评估使用全球数据集的集成技术。先前的研究表明,某些集成方法在全球某些地区的数据集上表现不佳,我们的实验也支持了这一观点。数据集包含每日股票数据(年度最高价、年度价格、收盘价)。为了推广本研究的结果,我们使用了五个广泛使用的技术指标:(SMA)、(OBV)(OBV)。读数基于五个主要指标。我们旨在使用回归和分类来预测 30 天的收盘价和走势。在进行进一步分析之前,下载的数据集经历了两个基本过程:数据清理和数据转换。
1.2 数据清理
由于股票市场数据固有的复杂性和随机性,它总是容易受到噪声的影响,这可能会阻止机器学习系统准确分析潜在模式。方程(1)使用小