利用深度学习与机器学习提升内陆水质监测与学生成绩预测的研究
1. 深度学习助力内陆水质监测
1.1 研究背景与意义
内陆水资源如湖泊、河流和溪流对环境和人类福祉至关重要。近年来,卫星技术的进步使得从太空监测内陆水资源成为可能,这为深度学习技术在该领域的应用带来了新机遇。深度学习作为一种机器学习类型,可利用人工神经网络从大型数据集中学习,用于检测和分类卫星图像中的物体、识别土地覆盖和地表水特征的变化,以及监测内陆水体的健康状况。
一些研究者已经探索了不同的方法来分类和检测水体图像。例如,使用随机欠采样提升(RUSBoost)技术结合CYGNSS数据进行内陆水含量识别;应用基于深度学习的方法对中国黄河流域的卫星图像进行内陆水源检测;利用深度学习技术检测沿海地区卫星图像中的水体,且发现其比传统方法更准确,能检测出图像中超过90%的水体。
1.2 研究目标
本研究的主要目标是通过卫星利用神经网络进行基于深度学习的内陆水图像分类,探索使用神经网络对正常图像和水图像进行分类的可能性。具体目标如下:
- 构建一个可通过卫星对正常图像和水图像进行分类的神经网络架构。
- 使用性能指标分析神经网络的性能。
1.3 相关模型架构背景
- VGG16架构 :VGG16是计算机视觉领域的一个重要发展,由牛津大学的Andrew Zisserman和Karen Simonyan创建。它在ImageNet大规模视觉识别挑战赛(ILSVRC)中对图像分类和目标识别技术进行了大规模评估,为该领域的其他发展铺平了道路。