Keras学习(三)——分类classification

本文详细阐述了如何运用Keras库构建神经网络模型,针对手写数字进行有效分类。通过示例代码展示了训练过程,揭示了模型的训练结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍使用keras搭建神经网络并对手写数字进行分类。

代码:

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop

# 使多次生成的随机数相同
np.random.seed(1337)

# 下载数据集
# X_shape(60000 28x28),y shape(10000)
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 预处理数据
'''
X_train.reshape(X_train.shape[0], -1) 将60000个28x28的数据变为60000x784
/255:把数据标准化到[0,1]
'''
X_train = X_train.reshape(X_train.shape[0], -1) / 255  # 标准化
X_test = X_test.reshape(X_test.shape[0], -1) / 255  # 标准化
# 将标签变为one-hot形式
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

# 搭建神经网络
model = Sequential([
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cchangcs

谢谢你的支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值