小结
- 线性方程组的定义
- 矩阵的定义
- 使用初等行变换解线性方程组
- 通过线性方程组的三角形形式快速判断方程组是否相容
线性方程组
包含变量x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn的线性方程是形如a1x1+a2x2+⋯+anxn=ba_1x_1 + a_2x_2+ \cdots + a_nx_n = ba1x1+a2x2+⋯+anxn=b的方程,其中b与系数a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an是实数或复数,通常是已知数。下标nnn可以是任意正整数。
线性方程组是由一个或几个包含相同变量x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn的线性方程组成的。
线性方程组的解是一组数(s1,s2,⋯ ,sn)(s_1,s_2,\cdots,s_n)(s1,s2,⋯,sn),用这组数分别代替x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn时所有方程的两边相等。
方程组所有可能的解的集合称为线性方程组的解集。若两个线性方程组有相同的解集,则这两个线性方程组称为等价的。
线性方程组的解有下列三种情况:
- 无解
- 有唯一解
- 有无穷多解
我们称一个线性方程组时相容的,若它有一个解或无穷多个解;称它是不相容的,若它无解。
矩阵记号
一个线性方程组包含的主要信息可以用一个称为矩阵的紧凑的矩形阵列表示。给出方程组{ x1−2x2+x3=02x2−8x3=85x1−5x3=10\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ 5x_1 - 5x_3 = 10 \\ \end{cases}⎩⎪⎨⎪⎧x1−2x2+x3=02x2−8x3=85x1−5x3=10,把每一个变量的系数写在对齐的一列中,矩阵[1−2102−850−5]\left[\begin{matrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \\ \end{matrix}\right]⎣⎡105−2201−8−5⎦⎤称为方程组的系数矩阵。[1−21002−8850−510]\left[\begin{matrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \\ \end{matrix}\right]⎣