线性方程组(四)- 矩阵方程

本文介绍了矩阵方程的概念,指出矩阵方程、向量方程和线性方程组拥有相同的解集。讨论了解的存在性条件,解释了方程Ax=b有解当且仅当b是A的列的线性组合。此外,还探讨了矩阵乘法的计算规则和性质,以及单位矩阵的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小结

  1. 矩阵方程的定义
  2. 矩阵方程的求解
  3. 矩阵方程、向量方程和线性方程组拥有相同的解集
  4. Ax\boldsymbol{Ax}Ax的计算、行-向量规则和性质

Ax=b\boldsymbol{Ax} = \boldsymbol{b}Ax=b

A\boldsymbol{A}Am×nm \times nm×n矩阵,它的各列为a1,⋯ ,an\boldsymbol{a_1,\cdots,a_n}a1,,an。若x\boldsymbol{x}xRn\mathbb{R}^{n}Rn中的向量,则A\boldsymbol{A}Ax\boldsymbol{x}x的积(记为Ax\boldsymbol{Ax}Ax)就是A\boldsymbol{A}A的各列以x\boldsymbol{x}x中对应元素为权的线性组合,即
Ax=[a1⋯an][x1x2⋮xn]=x1a1+x2a2+⋯+xnan\boldsymbol{Ax} = \begin{bmatrix} \boldsymbol{a_1} & \cdots & \boldsymbol{a_n} \\\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \end{bmatrix} = x_1\boldsymbol{a_1} + x_2\boldsymbol{a_2} + \cdots + x_n\boldsymbol{a_n}Ax=[a1an]x1x2xn=x1a1+x2a2++xnan
注意Ax\boldsymbol{Ax}Ax仅当A\boldsymbol{A}A的列数等于x\boldsymbol{x}x中的元素个数时才有定义。

Rm\mathbb{R}^{m}Rm中的v1,v2,v3\boldsymbol{v_1, v_2, v_3}v1,v2,v3,把线性组合3v1−5v2+7v33\boldsymbol{v_1} - 5\boldsymbol{v_2} + 7\boldsymbol{v_3}3v15v2+7v3表示为矩阵乘向量的形式。
解:把v1,v2,v3\boldsymbol{v_1, v_2, v_3}v1,v2,v3排列成矩阵A\boldsymbol{A}A,把数3,-5,7排列成向量x\boldsymbol{x}x,即
3v1−5v2+7v3=[v1v2v3][3−57]=Ax3\boldsymbol{v_1} - 5\boldsymbol{v_2} + 7\boldsymbol{v_3} = \begin{bmatrix} \boldsymbol{v_1} & \boldsymbol{v_2} & \boldsymbol{v_3} \\ \end{bmatrix} \begin{bmatrix} 3 \\ -5 \\ 7 \\ \end{bmatrix} = \boldsymbol{Ax}3v15v2+7v3=[v1v2v3]357=Ax

方程有形式Ax=b\boldsymbol{Ax} = \boldsymbol{b}Ax=b,我们称这样的方程为矩阵方程。由定义Ax=x1a1+x2a2+⋯+xnan\boldsymbol{Ax} = x_1\boldsymbol{a_1} + x_2\boldsymbol{a_2} + \cdots + x_n\boldsymbol{a_n}Ax=x1a1+x2a2++x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值