线性方程组(七)- 线性无关

本文深入探讨了向量组与矩阵各列线性无关性的概念,包括单个向量、向量集合及矩阵列的线性无关判断方法,通过实例解析如何确定向量组是否线性相关,并介绍了相关数学定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小结

  1. 向量组的线性无关
  2. 矩阵各列的线性无关
  3. 一个或两个向量的集合的线性无关
  4. 两个或多个向量的集合的线性无关

向量组的线性无关

Rn\mathbb{R}^{n}Rn中一组向量{v1,⋯ ,vp\boldsymbol{v_1,\cdots,v_p}v1,,vp}称为线性无关的,若向量方程仅有平凡解。向量组(集){v1,⋯ ,vp\boldsymbol{v_1,\cdots,v_p}v1,,vp}称为线性相关的,若存在不全为零的权c1,⋯ ,cpc_1,\cdots,c_pc1,,cp,使c1v1+⋯+cpvp=0c_1\boldsymbol{v_1}+\cdots+c_p\boldsymbol{v_p}=\boldsymbol{0}c1v1++cpvp=0方程成立。方程c1v1+⋯+cpvp=0c_1\boldsymbol{v_1}+\cdots+c_p\boldsymbol{v_p}=\boldsymbol{0}c1v1++cpvp=0称为向量v1,⋯ ,vp\boldsymbol{v_1,\cdots,v_p}v1,,vp的一个线性相关关系,其中权不全为零。一组向量线性相关当且仅当它不是线性无关的。为简单起见,我们也可说v1,⋯ ,vp\boldsymbol{v_1,\cdots,v_p}v1,,vp线性相关,意思是向量组(集){v1,⋯ ,vp\boldsymbol{v_1,\cdots,v_p}v1,,vp}是线性相关组。

v1=[123],v2=[456],v3=[210]\boldsymbol{v_1}=\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix},\boldsymbol{v_2}=\begin{bmatrix}4 \\ 5 \\ 6\end{bmatrix},\boldsymbol{v_3}=\begin{bmatrix}2 \\ 1 \\ 0\end{bmatrix}v1=123v2=456v3=210。确定向量组{v1,v2,v3\boldsymbol{v_1,v_2,v_3}v1,v2,v3}是否线性相关的。若线性相关,求出v1,v2,v3\boldsymbol{v_1,v_2,v_3}v1,v2,v3的一个线性相关关系。
解:行化简相应的增广矩阵:
[142025103600]\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \\ \end{bmatrix}123456210000[14200−3−300−6−60]\begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & -6 & -6 & 0 \\ \end{bmatrix}100436236000[14200−3−300000]\begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}100430230000
显然,x1x_1x1x2x_2x2为基本变量,x3x_3x3为自由变量。x3x_3x3的每一个非零值确定一组非平凡解。因此,向量组{
v1,v2,v3\boldsymbol{v_1,v_2,v_3}v1,v2,v3}是线性相关的。
继续行化简增广矩阵并写出对应方程组的通解 :
[10−2001100000]{x1=2x3x2=−x30为自由变量\begin{bmatrix}1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix}\quad \begin{cases}x_1 = 2x_3 \\ x_2 = -x_3 \\ 0为自由变量\end{cases}100010210000x1=2x3x2=x30
选择x3x_3x3的一个非零值,比如x3=5x_3=5x3=5,则x1=10x_1=10x1=10x2=−5x_2=-5x2=5
10v1−5v2+5v3=010\boldsymbol{v_1}-5\boldsymbol{v_2}+5\boldsymbol{v_3}=\boldsymbol{0}10v15v2+5v3=0就是v1,v2,v3\boldsymbol{v_1,v_2,v_3}v1,v2,v3的一个线性相关关系。

矩阵各列的线性无关

设我们不考虑向量组而是考虑矩阵A=[a1⋯an]\boldsymbol{A}=\begin{bmatrix}\boldsymbol{a_1} & \cdots &\boldsymbol{a_n}\end{bmatrix}A=[a1an],矩阵方程Ax=0\boldsymbol{Ax}=\boldsymbol{0}Ax=0可以写成x1a1+⋯+xnan=0x_1\boldsymbol{a_1}+\cdots+x_n\boldsymbol{a_n}=\boldsymbol{0}x1a1++xnan=0
A\boldsymbol{A}A的各列之间的每一个线性相关关系对应于方程Ax=0\boldsymbol{Ax}=\boldsymbol{0}Ax=0的一个非平凡解。矩阵A\boldsymbol{A}A的各列线性无关,当且仅当方程Ax=0\boldsymbol{Ax}=\boldsymbol{0}Ax=0仅有平凡解。

确定矩阵A=[01412−1580]\boldsymbol{A}=\begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0\end{bmatrix}A=015128410的各列是否线性无关。
解:为研究Ax=0\boldsymbol{Ax}=\boldsymbol{0}Ax=0,把增广矩阵进行行化简:
[014012−105800]\begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \\ \end{bmatrix}015128410000[12−10014002−50]\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 2 & -5 & 0 \\ \end{bmatrix}100212145000[12−10014000130]\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \\ \end{bmatrix}1002101413000
显然,x1x_1x1x2x_2x2x3x_3x3为基本变量,无自由变量。因此方程Ax=0\boldsymbol{Ax}=\boldsymbol{0}Ax=0仅有平凡解。A\boldsymbol{A}A的各列是线性无关的。

一个或两个向量的集合的线性无关

仅含一个向量(比如说v\boldsymbol{v}v)的集合线性无关当且仅当v\boldsymbol{v}v不是零向量。这是因为当v≠0\boldsymbol{v} \neq 0v̸=0时向量方程x1v=0x_1\boldsymbol{v}=\boldsymbol{0}x1v=0仅有平凡解。零向量时线性相关的,因为x10=0x_1\boldsymbol{0}=\boldsymbol{0}x10=0有许多非平凡解。

确定下列向量组是否线性无关。

  1. v1=[31]\boldsymbol{v_1}=\begin{bmatrix}3 \\ 1\end{bmatrix}v1=[31]v2=[62]\boldsymbol{v_2}=\begin{bmatrix}6 \\ 2\end{bmatrix}v2=[62]
  2. v1=[32]\boldsymbol{v_1}=\begin{bmatrix}3 \\ 2\end{bmatrix}v1=[32]v2=[62]\boldsymbol{v_2}=\begin{bmatrix}6 \\ 2\end{bmatrix}v2=[62]

解:

  1. 注意v2\boldsymbol{v_2}v2v1\boldsymbol{v_1}v1的倍数,即v2=2v1\boldsymbol{v_2}=2\boldsymbol{v_1}v2=2v1。因此−2v1+v2=0-2\boldsymbol{v_1} + \boldsymbol{v_2} = \boldsymbol{0}2v1+v2=0,这表明{v1,v2\boldsymbol{v_1},\boldsymbol{v_2}v1v2}线性相关。
  2. cccddd满足cv1+dv2=0c\boldsymbol{v_1}+d\boldsymbol{v_2}=\boldsymbol{0}cv1+dv2=0。若c≠0c \neq 0c̸=0,则可用v2\boldsymbol{v_2}v2表示v1\boldsymbol{v_1}v1,即v1=(−dc)v2\boldsymbol{v_1}=(-\frac{d}{c})\boldsymbol{v_2}v1=(cd)v2。这是不可能的,因为v1\boldsymbol{v_1}v1不是v2\boldsymbol{v_2}v2的倍数。故ccc必是零。类似地ddd也必是零。这表明{v1,v2\boldsymbol{v_1},\boldsymbol{v_2}v1v2}是线性无关组。

两个向量的集合{v1,v2\boldsymbol{v_1},\boldsymbol{v_2}v1v2}线性相关,当且仅当其中一个向量是两一个向量的倍数。这个集合线性无关,当且仅当其中任一个向量不是另一个向量的倍数。

从几何意义上看,两个线性相关,当且仅当它们落在通过原点的同一条直线上。

两个或更多个向量的集合的线性无关

定理 两个或更多个向量的集合S=\boldsymbol{S}=S={v1,⋯ ,v2\boldsymbol{v_1}, \cdots,\boldsymbol{v_2}v1,,v2}线性相关,当且仅当S\boldsymbol{S}S中至少有一个向量是其他向量的线性组合。事实上,若S\boldsymbol{S}S线性相关,且v1≠0\boldsymbol{v_1} \neq 0v1̸=0,则某个vj(j>1)\boldsymbol{v_j}(j>1)vj(j>1)是它前面向量v1,⋯ ,vj−1\boldsymbol{v_1}, \cdots,\boldsymbol{v_{j-1}}v1,,vj1的线性组合。

必要性:若S\boldsymbol{S}S中某个vj\boldsymbol{v_j}vj是其他向量的线性组合,那么把方程两边剪去vj\boldsymbol{v_j}vj就产生一个线性相关关系,其中vj\boldsymbol{v_j}vj的权为(-1)。
如,若v1=c2v2+c3v3\boldsymbol{v_1}=c_2\boldsymbol{v_2}+c_3\boldsymbol{v_3}v1=c2v2+c3v3,那么0=−1v1+c2v2+c3v3+0v4+⋯+0vp\boldsymbol{0}=-1\boldsymbol{v_1}+c_2\boldsymbol{v_2}+c_3\boldsymbol{v_3}+0\boldsymbol{v_4}+\cdots+0\boldsymbol{v_p}0=1v1+c2v2+c3v3+0v4++0vp

充要性:设S\boldsymbol{S}S线性相关。
v1=0\boldsymbol{v_1}=\boldsymbol{0}v1=0,则它是S\boldsymbol{S}S中其他向量的一个线性组合。即0=c2v2+⋯+cpvp\boldsymbol{0}=c_2\boldsymbol{v_2}+\cdots+c_p\boldsymbol{v_p}0=c2v2++cpvp
v1≠0\boldsymbol{v_1} \neq \boldsymbol{0}v1̸=0,存在c1,⋯ ,cpc_1,\cdots,c_pc1,,cp不全为0,使得c1v1+⋯+cpvp=0c_1\boldsymbol{v_1}+\cdots+c_p\boldsymbol{v_p}=\boldsymbol{0}c1v1++cpvp=0
jjj是使cj≠0c_j \neq 0cj̸=0的最大下标。若j=1j=1j=1,则c1v1=0c_1\boldsymbol{v_1}=\boldsymbol{0}c1v1=0。这是不可能的,因为v1≠0\boldsymbol{v_1} \neq \boldsymbol{0}v1̸=0。故j > 1。即c1v1+⋯+cjvj+0vj+1+⋯+0vp=0c_1\boldsymbol{v_1}+\cdots+c_j\boldsymbol{v_j}+0\boldsymbol{v_{j+1}}+\cdots+0\boldsymbol{v_p}=\boldsymbol{0}c1v1++cjvj+0vj+1++0vp=0,可得cjvj=−c1v1−⋯−cj−1vj−1c_j\boldsymbol{v_j}=-c_1\boldsymbol{v_1}-\cdots-c_{j-1}\boldsymbol{v_{j-1}}cjvj=c1v1cj1vj1

定理 若一个向量组的向量个数超过每个向量的元素个数,那么这个向量组线性相关。就是说,Rn\mathbb{R^{n}}Rn中任意向量组{v1,⋯ ,vp\boldsymbol{v_1},\cdots,\boldsymbol{v_p}v1,,vp}当p>np>np>n线性相关。
因为未知量比方程多,必定有自由变量。

定理 若Rn\mathbb{R^{n}}Rn中向量组S=\boldsymbol{S}=S={v1,⋯ ,vp\boldsymbol{v_1,\cdots,\boldsymbol{v_p}}v1,,vp}包含零向量,则它线性相关。
把这些向量重新编号,我们可设v1=0\boldsymbol{v_1}=\boldsymbol{0}v1=0,于是方程1v1+0v2+⋯+0vp=01\boldsymbol{v_1}+0\boldsymbol{v_2}+\cdots+0\boldsymbol{v_p}=\boldsymbol{0}1v1+0v2++0vp=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值