YOLOv8-v12的评估指标转为COCO评估指标详细过程【附源码】
引言
在学术界与工业界,COCO指标因其标准化和多粒度评价能力(如小目标检测AP_s、中等目标AP_m等)被广泛采纳为通用基准。文本将详细介绍如何将YOLO模型在验证集上的评估结果转成COCO格式评估结果的详细过程与步骤。
希望能给各位小伙伴带来帮助。
YOLO原始评估结果如下:
转换COCO格式评估结果如下:
1.YOLO转换COCO格式标签
首先我们需要将有原始验证集中的YOLO格式标签文件转为COCO需要的Json格式标签文件,转换代码如下:
# --coding:utf-8--
# 声明文件编码为utf-8
import os # 导入os模块,用于操作文件和目录
import cv2 # 导入OpenCV库,用于图像处理
import json # 导入json模块,用于处理JSON格式数据
from tqdm import tqdm # 导入tqdm模块,用于显示进度条
import argparse # 导入argparse模块,用于解析命令行参数
classes = ['Pothole'] # 定义类别列表,当前只有一个类别:'Pothole'
# 创建ArgumentParser对象,用于解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', default='datasets/PotholeData/val/images', type=str, help="path of images") # 图片路径,默认值为'datasets/PotholeData/val/images'
parser.add_argument('--label_path', default='datasets/PotholeData/val/labels', type=str, help="path of labels .txt") # 标签路径,默认值为'datasets/PotholeData/val/labels'
parser.add_argument('--save_path', type=str, default='datasets/PotholeData/val/val.json', help="if not split the dataset, give a path to a json file") # 保存路径,默认值为'datasets/PotholeData/val/val.json'
arg = parser.parse_args() # 解析命令行参数
def yolo2coco(arg):
print("Loading data from ", arg.image_path, arg.label_path) # 打印加载数据的路径信息
# 确保图片路径和标签路径存在
assert os.path.exists(arg.image_path), f"Image path {arg.image_path} does not exist"
assert os.path.exists(arg.label_path), f"Label pa