YOLOv8-v12的评估指标转为COCO评估指标详细过程

YOLOv8-v12的评估指标转为COCO评估指标详细过程【附源码】

引言

在学术界与工业界,COCO指标因其标准化和多粒度评价能力(如小目标检测AP_s、中等目标AP_m等)被广泛采纳为通用基准。文本将详细介绍如何将YOLO模型在验证集上的评估结果转成COCO格式评估结果的详细过程与步骤。希望能给各位小伙伴带来帮助。

YOLO原始评估结果如下:在这里插入图片描述

转换COCO格式评估结果如下:在这里插入图片描述

1.YOLO转换COCO格式标签

首先我们需要将有原始验证集中的YOLO格式标签文件转为COCO需要的Json格式标签文件,转换代码如下:

# --coding:utf-8--  
# 声明文件编码为utf-8  
  
import os  # 导入os模块,用于操作文件和目录  
import cv2  # 导入OpenCV库,用于图像处理  
import json  # 导入json模块,用于处理JSON格式数据  
from tqdm import tqdm  # 导入tqdm模块,用于显示进度条  
import argparse  # 导入argparse模块,用于解析命令行参数  
  
classes = ['Pothole']  # 定义类别列表,当前只有一个类别:'Pothole'  
  
# 创建ArgumentParser对象,用于解析命令行参数  
parser = argparse.ArgumentParser()  
parser.add_argument('--image_path', default='datasets/PotholeData/val/images', type=str, help="path of images")  # 图片路径,默认值为'datasets/PotholeData/val/images'  
parser.add_argument('--label_path', default='datasets/PotholeData/val/labels', type=str, help="path of labels .txt")  # 标签路径,默认值为'datasets/PotholeData/val/labels'  
parser.add_argument('--save_path', type=str, default='datasets/PotholeData/val/val.json', help="if not split the dataset, give a path to a json file")  # 保存路径,默认值为'datasets/PotholeData/val/val.json'  
arg = parser.parse_args()  # 解析命令行参数  
  
def yolo2coco(arg):  
    print("Loading data from ", arg.image_path, arg.label_path)  # 打印加载数据的路径信息  
  
    # 确保图片路径和标签路径存在  
    assert os.path.exists(arg.image_path), f"Image path {arg.image_path} does not exist"  
    assert os.path.exists(arg.label_path), f"Label pa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack_pirate

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值