
SQL进阶实战技巧
文章平均质量分 83
通过对数据分析SQL语言的一些实战技巧总结,帮助您SQL技能更上一个台阶,最主要的是里面的案例都来自于日常业务实操及企业真实面试题,也能让你在平时做业务需求及面试时候游刃有余
优惠券已抵扣
余额抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
莫叫石榴姐
10多年IT经验,数仓及SQL领域教练及专家,曾作为主面试官,面试多个候选人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SQL进阶技巧:数据预处理如何对数据进行分桶【分箱】?
本文详细介绍了数据分析中常见的几种分桶方式:基于业务规则的分桶、等距分桶及等频分桶等,针对每种分桶方式给出了SQL实现原创 2024-08-05 13:26:31 · 2961 阅读 · 0 评论 -
SQL进阶技巧:如何按照某个字段对数据进行动态分桶?
如下表所示:表中userid是唯一的, 并且每个code对应的name是一样的, 每个code对应的name字段的人数不一定一样.需求: 将每个code对应的userid均分给name中的n1,n2,n3这种, 采用round_robin或者ranger的方式, 使用Hivesql实现。原创 2021-06-05 15:36:09 · 1259 阅读 · 1 评论 -
SQL进阶技巧:Hive如何巧解和差计算的递归问题?【应用案例2】
本文分析了一种和差计算的递归问题,通过对目标的拆解,找出规律,采用累计叠加的思想巧妙解决此类问题。原创 2024-08-02 12:46:45 · 692 阅读 · 0 评论 -
SQL进阶技巧:车辆班次问题分析
一班次,可能有多辆车,如果第一辆不出故障,这一班次就只有一辆车,如果出问题有第二辆车,如果出问题有后续多辆,直到把这一班次跑完,如果这一班次只有这一辆,既没before_id也没after_id,,我需要输出每班次的车,用sql实现这个表有3个id 车辆id,beforeid,afterid。注意:vehicle_id 是唯一且不重复的这样的数据表示:1.第一班次有3辆车,车辆id分别为1、2和3,其中1是第一辆车,3是最后一辆车。2.第二班次只有2辆车,车辆id为4,5。原创 2024-07-30 11:07:47 · 1165 阅读 · 11 评论 -
SQL 进阶技巧:断点重分组应用求连续段的最后一个数及每段的个数【拼多多面试题】
0 问题描述有一个id表,要求输出连续段的最后一个id及每段的个数create table test( id int) row format ;insert into test values (1),(2),(4),(5),(6),(9),(10),(11),(12);原创 2021-08-23 13:02:01 · 1268 阅读 · 2 评论 -
面试提问:数据开发中如何通过指标拆解来指导SQL编写?(附拆解模板)
摘要:指标拆解是一种高效的数据分析方法,通过将复杂业务指标分解为可执行的原子指标,指导SQL查询的编写。核心步骤包括:明确指标定义、拆解原子指标、定位数据源、确定分组维度、构建中间表。文章提供了指标拆解模板和实际案例(如用户留存率计算),并总结了拆解带来的5大好处:逻辑清晰、易于调试、可复用、降低错误率、便于协作。最后强调"一定义、二拆解、三定位、四分步、五合并"的口诀,适用于数仓开发、BI报表等场景。原创 2025-07-31 10:00:00 · 17 阅读 · 0 评论 -
京东数据研发一面:用HiveSQL计算新用户近7日留存率(不允许使用JOIN)
本文分享了一种高效计算7日用户留存率的HiveSQL方法,通过集合函数替代传统JOIN操作。核心思路是将用户活跃日期聚合为数组,用array_contains判断留存状态,相比JOIN方式性能提升显著(百万级数据从12分钟降至1分钟)。方法要点包括:使用COLLECT_SET去重聚合活跃日期,通过date_add计算目标留存日,并兼容不同日期格式。该方案可灵活扩展至N日留存计算,体现了大数据处理中"用集合替代关联"的优化思维,为电商、外卖等业务场景的用户行为分析提供了高效解决方案。原创 2025-07-30 12:30:00 · 28 阅读 · 0 评论 -
JD物流运输面试SQL题:物流时效分析实战
本文基于HiveSQL,提出了一套完整的物流时效分析方案,用于计算三大核心指标:各线路平均运输时长、准时交付率和最常延误线路。方案采用CTE和窗口函数分层处理数据,通过一次表扫描完成多指标计算,保证了性能与准确性。SQL实现中详细解析了DATEDIFF函数计算运输时长、CASE WHEN判断准时订单以及DENSE_RANK进行延误排名的关键逻辑。示例数据执行结果显示,该方案能清晰识别高效线路(准时率100%)和问题线路(延误率100%),为物流优化提供数据支持。方案具有结构化查询、结果完整性强等特点,并可扩原创 2025-07-30 09:00:00 · 16 阅读 · 0 评论 -
SQL实战:如何精准计算用户页面停留时长(含连续访问合并与异常处理)
本文探讨了如何通过SQL精准计算用户在页面的停留时长,解决日志数据中常见的连续重复事件、事件缺失和连续访问合并三大问题。通过三步处理:1)过滤连续重复事件,保留有效enter/leave;2)为enter匹配最近的leave,缺失时用超时时间或下次事件时间填充;3)合并间隔≤30分钟的连续访问为同一会话。关键SQL技术包括窗口函数、时间函数和CTE,同时强调了业务规则(如超时阈值设定)的重要性。最终方案能有效处理脏数据,准确计算用户停留时长,为分析用户粘性提供可靠依据。原创 2025-07-21 13:30:00 · 40 阅读 · 0 评论 -
SQL面试提问:如何生成连续日期表并填充销售数据中缺失的日期?| 京东
本文介绍了Hive中生成连续日期序列并补全销售数据的两种方法。对于支持递归CTE的高版本Hive,可通过递归生成产品日期范围内的所有日期;低版本则需借助数字序列表和日期函数实现。核心步骤包括:确定产品销售日期范围、生成连续日期序列、关联销售数据补全缺失值(缺失日期销售额记为0)。文章详细解析了两种实现方式的SQL代码,并提供了使用示例和版本兼容性说明,帮助用户根据实际环境选择合适方案,确保销售数据分析的时间序列完整性。原创 2025-07-21 09:00:00 · 36 阅读 · 0 评论 -
SQL面试题:如何统计美团外卖骑手近30天配送数据?(订单数/时长/差评率全解析)
本文介绍了如何通过SQL统计外卖骑手近30天的核心配送数据,包括配送订单数、平均配送时长和差评率三个关键指标。重点解析了数据筛选规则(时间范围、订单状态、异常值处理)和指标计算方法,并提供了完整的SQL实现示例。文章还探讨了性能优化策略(索引设计、分区表)和业务扩展方向,解答了关于时间基准选择、异常值处理、差评率计算等常见问题。该案例展示了SQL在业务分析中的实际应用流程,包括需求拆解、数据清洗、指标计算和优化扩展等关键环节。原创 2025-07-18 09:00:00 · 119 阅读 · 0 评论 -
面试灵魂拷问:SQL语句中where条件后为什么写上1=1?有什么作用?
摘要: WHERE 1=1是SQL中的一种动态条件拼接技巧,在数仓ETL和动态查询场景中具有重要作用。核心价值在于简化条件拼接逻辑,避免语法错误,提升脚本可维护性和灵活性。主要应用场景包括:1)动态分区加载,确保分区条件优先拼接;2)多条件报表查询,统一处理可选参数;3)调试测试,快速切换条件。数仓中需注意分区裁剪优化,避免性能影响,主流引擎(如Hive/SparkSQL)会忽略1=1的冗余条件。合理使用该技巧可提升工程效率,但需避免在固定条件场景中滥用以保持代码简洁性。原创 2025-07-16 10:00:00 · 48 阅读 · 0 评论 -
SQL表模型设计题目:员工部门父子级关系,要设计出一张表方便查询一级部门的员工人数?
【摘要】针对员工-部门父子级关系的表设计问题,提出两种高效解决方案: MySQL方案:采用邻接表模型,部门表存储层级关系(parent_dept_id),员工表关联部门ID。通过递归CTE查询一级部门及其子部门的员工总数,配合索引优化查询性能。 Hive方案:结合邻接表与路径枚举法,部门表新增dept_path字段(如"/1/2/")快速定位子部门。利用分区/分桶优化大数据查询,并建议预计算生成汇总表提升高频查询效率。 两种方案均支持统计一级部门总人数(含子部门),MySQL适合中小规模原创 2025-07-14 09:00:00 · 29 阅读 · 0 评论 -
面试提问:SQL JOIN 中 ON 和 WHERE 条件的区别
SQL 中,JOIN 操作中的条件可以写在 ON 子句或 WHERE 子句中,但它们的行为和结果有重要区别。要理解SQL中JOIN时条件写在ON后与WHERE后的区别,需结合JOIN类型(如INNER JOINLEFT JOIN)及执行逻辑分析。。以下通过示例详细说明。原创 2025-07-07 13:00:00 · 65 阅读 · 0 评论 -
Hive SQL 高级应用:实战演练—从经典题目到业务洞察
摘要: 本文展示了16个高级SQL实战案例,涵盖电商数据分析的多个维度。通过排名筛选、分类聚合、用户行为分析等场景,演示了DENSE_RANK()、窗口函数、多表关联等高级SQL技巧的应用。案例包括销量排名分析(筛选销量第二商品)、用户连续性行为识别(连续登录)、品类爆款挖掘(TopN分析)、用户价值分群(累计消费分级)、价格快照查询(时点状态)等典型业务场景。每个案例提供完整SQL实现,涉及日期处理、条件聚合、比率计算等数据仓库常见需求,为构建复杂分析报表提供了实用参考模板。原创 2025-06-27 09:00:00 · 465 阅读 · 0 评论 -
HiveSQL高级应用:数据洞察与分析—从基础到实战解锁数据价值
本文通过13个实际案例展示了电商数据分析的SQL实现方法,涵盖订单分析、用户行为、商品销售等多个维度。案例1-3分别使用窗口函数计算3日订单金额趋势、通过collect_set分析商品关联、运用条件求和对比商品销量;案例4-6涉及用户最近订单追踪(ROW_NUMBER)、登录空档期计算(DATEDIFF/LEAD)和异常登录检测;案例7-13包含连续销售达标判断、商品分类统计、品类Top3筛选、价格中位数计算等典型场景。文中还详细提供了10张业务表的建表语句和测试数据,包括用户信息、商品明细、订单数据等,为原创 2025-06-25 22:30:47 · 77 阅读 · 0 评论 -
SQL面试题:基于时间间隔的浏览时长问题
本文详解基于时间间隔的用户会话识别算法,通过HiveSQL实现点击流数据的分组统计。核心步骤包括:计算相邻点击时间差、标记新会话起点、构造会话标识、分组聚合统计。该方案采用窗口函数LAG()和SUM()OVER()组合,可准确输出每个会话的开始时间、点击次数和总时长。该方法适用于电商、游戏、广告监测等领域的用户行为分析,是构建数据分析系统的基础能力。文章还提供了完整SQL脚本、执行示例及进阶优化建议,具有较高的工程实践价值。原创 2025-06-25 09:00:00 · 72 阅读 · 0 评论 -
SQL面试题:用户登录行为分析
文章摘要: 本文介绍了用户行为分析的6个核心指标定义及SQL实现方法:活跃用户(当日登录)、新增用户(首次登录)、留存用户(持续使用)、流失用户(未登录超阈值)、沉默用户(仅登录一次)和回流用户(重新激活)。通过示例数据表结构(含用户ID和登录日期字段),展示了各指标的计算逻辑和SQL查询模板,包括多表关联、日期差值计算和分组统计等技术要点。该分析框架可帮助产品团队量化用户活跃度、增长趋势、粘性及流失情况,为优化产品体验和用户召回策略提供数据支持。原创 2025-06-24 09:30:00 · 70 阅读 · 0 评论 -
SQL面试题:舆情分析 | 字节跳动2025
📱抖音、西瓜、头条等媒体平台的文字流(文章、评论、弹幕)。🔍创业人物:雷军雷布斯汝波梁汝波一鸣张一鸣胖东来刘强东情绪词:我去忍火离职废物🔄同时命中创业人物和情绪词(标题或内容中均可)。📋统计命中记录的详细信息及关键词。🎯目标识别包含指定创业人物与情绪词的文本。⚖️条件每条记录需同时包含至少一个创业人物和一个情绪词。📊输出命中记录的详细信息及关键词统计。原创 2025-06-23 09:00:00 · 239 阅读 · 0 评论 -
SQL面试题:推荐商品问题—基于用户相似性的推荐
本文提出一种基于用户共同购买行为的商品推荐方法。通过分析用户购买记录,当两个用户共同购买至少2件商品时,将他们视为相似用户。系统会自动将相似用户购买而目标用户未购买的商品作为推荐项。文章详细阐述了SQL实现步骤:1)识别相似用户对;2)获取相似用户购买的商品;3)筛选目标用户未购买的商品作为推荐。该方法实现了简单的协同过滤推荐,但存在未考虑商品类别、购买频率等局限。适用于中小规模电商系统的个性化推荐场景。原创 2025-06-18 23:24:05 · 63 阅读 · 0 评论 -
快手数据开发面试SQL题:取窗口内排名第一和排名倒数第一的作为两个字段输出
摘要:本文介绍了如何通过窗口函数和条件聚合获取每个销售组内最高和最低销售额人员的解决方案。使用RANK()函数分别计算正序和倒序排名以处理并列情况,通过CONCAT_WS和COLLECT_SET将多行合并为单行输出。方案包含中间结果验证步骤,并重点解释了窗口函数选择(RANK而非ROW_NUMBER)、并列数据处理等技术要点,同时考虑了全组数据相同的特殊情况。最后针对常见问题(如性能优化、结果格式调整)提供了专业解答,展示了从问题分析到完整实现的系统化解决思路。原创 2025-06-17 08:49:42 · 105 阅读 · 0 评论 -
SQL面试实战:货拉拉司机回本天数分析
本文通过货拉拉司机会员策略案例,详细解析如何用SQL解决时间序列累计计算问题。针对平台经济中评估司机回本周期的需求,提出四步解决方案:1)计算订单利润;2)关联缴费记录并窗口函数累计利润;3)确定首次回本日期;4)聚合平均回本天数。重点展示了窗口函数PARTITION BY和ORDER BY的组合应用,以及业务逻辑到SQL的转换过程。该方案可分析不同城市、套餐的回本差异,为优化会员策略提供数据支持,同时锻炼数据分析师处理复杂业务场景的能力,是数据分析面试中考察SQL和业务理解的典型案例。原创 2025-06-05 09:00:00 · 97 阅读 · 0 评论 -
SQL面试提问:如何计算用户注册到首次下单的时间间隔分布?
本文介绍了使用SQL分析用户从注册到首次下单时间间隔的方法与价值。通过分层CTE结构实现模块化开发,包括提取首次下单时间、计算转化周期、分组统计等步骤。文章详细解析了SQL实现方案,包括时间标准化处理、区间分组策略和百分比计算等技术要点,并给出生产环境优化建议(分区裁剪、数据质量保障等)。业务应用示例展示了如何通过转化周期分布指导运营决策,如针对不同区间用户采取差异化策略。最后提供了面试回答的结构化模板(STAR-L法),强调技术实现与业务理解的结合,包括性能优化、结果解读和扩展思考等维度。该分析能有效评估原创 2025-05-29 09:00:00 · 73 阅读 · 0 评论 -
SQL面试提问:如何计算销售KPI达成进度?
【摘要】文章模拟了HiveSQL面试场景,针对水果订单表的KPI统计需求,提出两种解决方案:1)窗口函数实现按日累计销售进度;2)CTE+行转列展示分类进度。详细拆解了SQL编写要点,包括日期处理、累计计算、行转列技巧和性能优化。同时总结了面试高频考点:窗口函数、动态KPI适配、NULL值处理等,并提供了进阶优化思路(分区表、列式存储)和应变策略(动态SQL生成)。最后给出面试建议:主动展示技术深度,明确需求边界。原创 2025-05-26 10:00:00 · 104 阅读 · 0 评论 -
SQL基础:HiveSql常用的时间维度计算方法(月初、月末、周几)及时间维度 表生成
本文总结了关于Hive中时间函数的使用及时间维度表的生成方法,时间维度表及时间函数在数据开发中经常被用到,这块需要切实掌目前格式支持:MM(月)YYYY(年)Hive3.0后支持Q表示季度select trunc(current_date,'MM') --月初select trunc(current_date,'YY') --年初last_day()last_day(string date) — 返回该月最后一天的日期select last_day(current_d.原创 2022-05-30 10:32:27 · 23932 阅读 · 2 评论 -
SQL进阶技巧 | 如何取多个表中某一字段不为空且时间最新的值?
name王二2222022张三1232019李四8642021。原创 2025-05-06 08:15:00 · 1344 阅读 · 0 评论 -
SQL进阶技巧:上课时长计算
需将同一学生同一课程的所有终端时间段去重,合并重叠或连续的区间,最终计算总时长。按分区字段(Stu_ID, lesson_ID)和排序键(start_time, end_time)建立索引,可加速窗口函数计算。2.多个terminal在线时间很有可能重叠(见彩色高亮部分)。:识别连续或重叠的时间区间,将其归并为同一组(Island)。动态计算历史区间极值,替代传统的自连接方法,极大提升执行效率。统计学生在线时长,包含所有terminal,排除时间重叠部分。转换为分钟,适配业务需求。获取历史最大结束时间。原创 2025-03-04 08:00:00 · 1566 阅读 · 0 评论 -
SQL进阶实战技巧:汽车转向次数分析 | 真实场景案例
。原创 2025-02-25 23:13:04 · 780 阅读 · 0 评论 -
SQL进阶技巧:如何统计用户跨端消费行为?
笛卡尔积构造法使用UNION生成所有可能的日期平台组合,解决数据缺失问题分层聚合策略第一层:按用户+日期聚合,标记平台类型第二层:按平台类型聚合统计空值处理技巧保证无数据时显示0平台类型判断巧用精准识别用户行为。原创 2025-02-18 17:14:11 · 327 阅读 · 0 评论 -
SQL进阶实战技巧:如何分析买家之间共同卖家的数量?
在数据分析中,了解买家之间的关联性是一个重要的需求。本文详细探讨如何计算两个买家之间的共同卖家数量,并提供两种不同的解决方案。通过以上两种方法,我们可以有效地计算出两个买家之间的共同卖家数量。第一种方法利用了PostgreSQL的数组函数,简洁高效;第二种方法则适用于Hive环境,通过展开和连接操作实现相同的功能。选择哪种方法取决于具体的数据库环境和需求。已知买家和卖家的交易关系,简要表结构如下,求两个买家之间共同卖家的数量。函数,可以用如何方法求解。分别为 1、2、3、4)和他们对应的卖家列表(原创 2025-02-13 14:54:45 · 818 阅读 · 0 评论 -
3分钟学会全称量词与存在量词问题的巧妙解法,让你的数据筛选高效起来?
5.2 关键要点总结最值函数是实现全称量词判断的核心工具空集合处理是保障准确性的必要步骤动态阈值需通过参数化实现灵活控制混合条件应分层处理降低复杂度希望通过今天的分享,大家对 SQL 中全称量词与存在量词问题的处理有更深入的理解和掌握。在实际工作中,灵活运用这些方法和技巧,能大大提高我们的数据处理效率和质量。如果你在实践中遇到什么问题,欢迎在留言区交流哦!原创 2025-02-15 08:30:00 · 843 阅读 · 0 评论 -
3分钟学会SQL中的时点状态分析技术,轻松搞定时间重叠和时间间隙两大难题?
3分钟学会SQL中的时点状态分析技术,轻松搞定时间重叠和时间间隙两大难题?原创 2025-02-08 08:30:00 · 205 阅读 · 0 评论 -
Hive中ROW_NUMBER取Top N的数据倾斜的优化方案:基于赛马定理的优化策略
在大数据处理领域,Hive作为常用的SQL-on-Hadoop工具,广泛用于执行复杂的数据聚合和分析任务。然而,当涉及到使用ROW_NUMBER()函数进行分组排序并提取Top N记录时,数据倾斜问题常常成为性能瓶颈。本文提出了一种基于赛马定理的优化策略,通过分阶段处理和动态子组分配,有效解决了数据倾斜问题,显著提升了查询效率和资源利用率。原创 2025-02-10 08:30:00 · 252 阅读 · 0 评论 -
如何通过SQL解析JSON:技术详解与实践指南
工具选择建议简单查询:优先使用数据库内置函数(如MySQL的复杂嵌套:推荐PostgreSQL(JSONB)或Hive(JSON SerDe)。大规模数据:使用Spark SQL实现分布式解析。避免的陷阱- JSON格式不规范(如缺失引号)。- 频繁解析导致的性能瓶颈。- 嵌套过深影响可读性和维护性。原创 2025-02-05 21:15:22 · 566 阅读 · 0 评论 -
订单状态监控实战:基于 SQL 的状态机分析与异常检测
目录1. 背景与问题 2. 数据准备2.1 表结构设计3. 场景分析与实现3.1 场景 1:检测非法状态转换目标实现输出结果3.2 场景 2:计算状态停留时长目标实现输出结果(片段)3.3 场景 3:跟踪完整状态路径目标实现输出结果3.4 场景 4:发现未完成订单目标实现 4. 高级分析:递归查询状态树目标实现输出结果 5. 可视化与报警5.1 可视化5.2 报警机制6. 性能优化7. 总结往期精彩专栏优势:我的专栏具体链接如下:在电商、物流或工单系统中,订单状态机是核心业务逻辑之一。状态机的正确流转直接影原创 2025-02-03 15:15:47 · 1256 阅读 · 0 评论 -
3分钟学会SQL中的序列分析技术,轻松搞定时间序列状态流转问题?
定义:通过分析有序数据(时间序列、状态流转、操作路径等),识别模式、趋势及异常的技术。三大特征顺序敏感:数据按时间或逻辑顺序排列(如用户点击流、设备状态变更)。上下文关联:当前事件受前序事件影响(如用户购买前的浏览行为)。模式驱动:关注连续性、周期性和转换规则(如“A→B→C”路径)。典型场景用户行为路径分析设备状态机监控(运行→故障→维护)供应链物流跟踪(生产→质检→出库)金融交易流水审计。原创 2025-02-04 09:00:00 · 1054 阅读 · 0 评论 -
3分钟学会SQL中的断点去重技术,轻松搞定连续重复数据去重问题?
传感器采集的温度数据中,存在连续重复的值,需仅在数值变化时保留记录(例如:温度从 25°C 变为 26°C 时记录一次)。:判断逻辑,current_value!若当前温度与前一行的温度不同(或为第一条记录),则保留该行。的技术,常用于时间序列或状态日志中。:将连续相同值的记录合并,只保留断点处的记录。保留断点处的记录(即温度变化时的第一条)。原始数据表 sensor_data。最终仅保留值变化的断点记录。获取前一行的温度值。原创 2025-02-01 08:00:00 · 840 阅读 · 0 评论 -
颠覆认知,90%程序员都不知道的7大去重技巧
方法核心思路适用场景性能特点分组聚合分组键+聚合函数简单统计最快,但丢失明细组内窗口函数排序ROW_NUMBER() 按规则编号组内取 Top 1中等,需排序计算断点检测LAG() + 累加标记分组连续重复值合并中等,需两次扫描递归 CTE逐层遍历树形结构层级数据去重慢,递归深度影响性能区间合并窗口函数计算累计边界交叉或重叠时间/数值范围合并中等,需排序计算集合操作哈希去重或条件过滤多表联合去重UNION 较慢,EXISTS 较快累计去重。原创 2025-01-31 09:00:00 · 1307 阅读 · 0 评论 -
深入解析 COUNT(DISTINCT) OVER(ORDER BY):原理、问题与高效替代方案
的性能缺陷:其时间复杂度达到O(n²),在大数据场景完全不可用。替代方案的核心优势预聚合窗口函数:通过预处理将复杂度降至O(n)位图压缩:利用位运算实现O(1)复杂度的集合操作HLL算法:以可控误差换取百倍性能提升未来趋势硬件加速:GPU/FPGA加速位图运算算法融合:HLL+位图的混合去重方案云原生集成:Snowflake等平台内置智能去重优化器建议开发者在实际工作中:建立数据规模的监控预警机制对核心业务表预先设计去重方案定期Review去重逻辑,避免技术债累积。原创 2025-01-31 09:00:00 · 1121 阅读 · 0 评论 -
别再为用户流失头疼,基于SQL 从 0 到 1 构建用户流失风险评估模型
SQL进阶技巧:车辆班次问题分析SQL 进阶技巧:断点重分组应用求连续段的最后一个数及每段的个数【拼多多面试题】SQL进阶技巧-:字符串时间序列分析法应用之用户连续签到天数及历史最大连续签到天数问题【腾讯面试题】SQL进阶技巧:断点重分组算法应用之用户订单日期间隔异常问题分析SQL进阶技巧:如何对连续多条记录进行合并?计算加权评分,由于是风险模型,因此对于登录次数,消费金额以及活跃天数需要进行倒数处理,值越大风险越高。根据特征的重要性,为每个特征分配一个权重,并计算每个用户的加权评分。原创 2025-01-27 08:30:00 · 1025 阅读 · 0 评论