空间系绳卫星系统运动数值模拟的并行算法研究
1. 引言
在计算机上对系绳系统进行数学建模需要大量时间。通常使用大型常微分方程组(ODE)进行建模,方程数量多达数万。即使利用现有的计算资源,直接对这类系统进行数值求解也颇具难度。目前求解大型方程组的方法主要分为两类:
- 第一类 :聚焦于对已知数值方法进行并行化处理(通常不改变方法本身)。然而,在集群系统上运用此方法求解常微分方程组的效果并不理想,原因在于它未充分考虑待求解问题的特性。
- 第二类 :借助特殊的启发式技术降低计算成本,这类技术通常会利用问题的物理特性。不过,该类方法对解的精度关注较少,通过降低数值方法的精度来提升计算速度,同时确保结果质量不受太大影响。
接下来将探讨这些方法在空间系绳系统运动模拟问题中的应用。
2. 空间系绳动力学的数学模型
广泛应用的系绳系统运动数学模型是用偏微分方程组来描述系绳。在此情况下,采用连续介质力学的数学模型来描述系绳运动,将系绳视为可伸展(或不可伸展)的细长体,通常长度较长。推导此类系统的运动方程相对简单,需考虑长度为 $\Delta S$ 的拉伸系绳微元,并对其应用牛顿第二定律:
[
\rho(S) \frac{\partial^2 \vec{r}}{\partial t^2} = \frac{\partial \vec{T}}{\partial S} + \vec{q} \quad (1)
]
其中,$\rho(S)$ 是系绳的线质量密度,$\vec{r}$ 是拉伸微元的位置,$t$ 是时间,$\vec{T}$ 是张力,$\v