计算机考研408真题解析(2023-11 快速排序Partition操作深度解析)

【良师408】计算机考研408真题解析(2023-11 快速排序Partition操作深度解析)

传播知识,做懂学生的好老师
1.【哔哩哔哩】(良师408)
2.【抖音】(良师408) goodteacher408
3.【小红书】(良师408)
4.【CSDN】(良师408) goodteacher408
5.【微信】(良师408) goodteacher408

特别提醒:【良师408】所收录真题根据考生回忆整理,命题版权归属教育部考试中心所有

快速排序Partition操作深度解析:从408真题到算法实现

摘要:本文基于2023年408考研真题,深入分析快速排序核心操作——划分(Partition)的实现机制与结果特性,提供完整的C语言算法实现、复杂度分析及实际应用场景,旨在帮助读者透彻理解快速排序的精髓。

计算机考研 408 真题解析 2023-11 快速排序 Partition 操作深度解析

🎯 问题描述

在计算机考研408统考中,快速排序是数据结构与算法部分的必考内容。其中,划分(Partition)操作是其核心。本文将分析一道典型的真题,以加深对该操作的理解:

【2023-11】 使用快速排序算法对数据进行升序排序,若经过一次划分后得到的数据序列是 68,11,70,23,80,77,48,81,93,88,则该次划分的枢轴是( )。

A. 11
B. 70
C. 80
D. 81

📊 算法分析:快速排序的划分(Partition)

1. 核心概念与结果特性

快速排序 (Quick Sort) 是一种高效的排序算法,其核心在于划分 (Partition) 操作。划分的目标是:

  1. 选择一个元素作为枢轴 (Pivot)
  2. 重新排列数组,使得所有小于或等于枢轴的元素都移到枢轴的左边,所有大于或等于枢轴的元素都移到枢轴的右边。
  3. 划分完成后,枢轴元素将位于其在最终有序序列中的正确位置。

结果特性:对于划分后的序列 ... L ... p ... R ...,其中 p 是枢轴,必然满足 ∀x ∈ L, x ≤ p∀y ∈ R, y ≥ p

2. 解题思路:逆向验证

本题要求我们根据划分后的结果反推枢轴。我们无需执行划分操作,只需利用上述**“左小右大,枢轴归位”**的特性,逐一验证选项。

给定序列S = [68, 11, 70, 23, 80, 77, 48, 81, 93, 88]

  • A. 枢轴为11:11左侧有 68 (68 > 11),不满足条件。
  • B. 枢轴为70:70右侧有 2348 (23 < 70, 48 < 70),不满足条件。
  • C. 枢轴为80:80右侧有 7748 (77 < 80, 48 < 80),不满足条件。
  • D. 枢轴为81
    • 左侧子序列[68, 11, 70, 23, 80, 77, 48]。所有元素均小于81。满足条件
    • 右侧子序列[93, 88]。所有元素均大于81。满足条件
    • 两个条件同时满足,因此 81 是本次划分的枢轴。

💻 代码实现

以下是验证枢轴合法性的C语言函数,以及一个标准的快速排序划分函数的实现。

#include <stdio.h>
#include <stdbool.h>

/**
 * @brief 验证在数组arr中,pivot_val在pivot_idx位置是否是一个合法的枢轴
 * @param arr 划分后的数组
 * @param len 数组长度
 * @param pivot_val 枢轴的值
 * @param pivot_idx 枢轴在数组中的索引
 * @return 如果是合法枢轴,返回true,否则返回false
 */
bool isPivot(int arr[], int len, int pivot_val, int pivot_idx) {
    // 检查左边:所有元素都应小于等于枢轴
    for (int i = 0; i < pivot_idx; i++) {
        if (arr[i] > pivot_val) {
            return false;
        }
    }
  
    // 检查右边:所有元素都应大于等于枢轴
    for (int i = pivot_idx + 1; i < len; i++) {
        if (arr[i] < pivot_val) {
            return false;
        }
    }
  
    return true;
}

/**
 * @brief 标准快速排序的划分函数(Lomuto Partition Scheme)
 *        选择最后一个元素作为枢轴
 * @param arr 待排序数组
 * @param low 子数组的起始索引
 * @param high 子数组的结束索引
 * @return 枢轴的最终位置
 */
int partition(int arr[], int low, int high) {
    int pivot = arr[high]; // 选择最后一个元素作为枢轴
    int i = (low - 1);     // 小于枢轴元素的最后一个位置
  
    for (int j = low; j <= high - 1; j++) {
        // 如果当前元素小于或等于枢轴
        if (arr[j] <= pivot) {
            i++; // 增加小于枢轴元素的计数
            // 交换 arr[i] 和 arr[j]
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }
    // 将枢轴放到正确的位置
    int temp = arr[i + 1];
    arr[i + 1] = arr[high];
    arr[high] = temp;
    return (i + 1); // 返回枢轴的最终位置
}

// 示例测试函数
int main() {
    int partitioned_array[] = {68, 11, 70, 23, 80, 77, 48, 81, 93, 88};
    int len = sizeof(partitioned_array) / sizeof(int);
  
    printf("划分后序列: ");
    for (int i = 0; i < len; i++) {
        printf("%d ", partitioned_array[i]);
    }
    printf("\n\n");
  
    // 验证选项D (81) 是否为合法枢轴
    int pivot_val = 81;
    int pivot_idx = 7; // 81在数组中的索引
    bool result = isPivot(partitioned_array, len, pivot_val, pivot_idx);
  
    printf("验证 %d 在位置 %d 是否为合法枢轴? %s\n", 
           pivot_val, pivot_idx, result ? "是" : "否");
  
    if (result) {
        printf("  左侧元素: ");
        for (int j = 0; j < pivot_idx; j++) {
            printf("%d ", partitioned_array[j]);
        }
        printf("(都 <= %d)\n", pivot_val);
      
        printf("  右侧元素: ");
        for (int j = pivot_idx + 1; j < len; j++) {
            printf("%d ", partitioned_array[j]);
        }
        printf("(都 >= %d)\n", pivot_val);
    }
  
    return 0;
}

📈 复杂度分析

1. 时间复杂度

  • isPivot 函数:需要遍历枢轴左右两侧的元素,时间复杂度为 O(n),其中 n 为数组长度。
  • partition 函数:单次划分操作需要遍历整个子数组,时间复杂度为 O(n)

2. 空间复杂度

  • isPivot 函数:仅使用常数个额外变量,空间复杂度为 O(1)
  • partition 函数:仅使用常数个额外变量,空间复杂度为 O(1)

🚀 实际应用场景

快速排序及其划分思想在计算机科学中有着广泛的应用:

  1. 系统库函数:许多编程语言的标准库(如C语言的 qsort(),C++的 std::sort())底层都可能采用快速排序或其变种实现,因其在平均情况下的高效性。
  2. 大数据排序:对于内存中的大规模数据集排序,快速排序通常是首选算法之一,尤其适用于需要原地排序的场景。
  3. Top K 问题:快速排序的划分思想可以高效地解决“查找数组中第K大/小的元素”这类问题(Selection Algorithm),无需完全排序。

⚠️ 常见错误与调试技巧

1. 枢轴特性理解偏差

  • 错误:认为枢轴左侧必须严格小于,右侧必须严格大于。
  • 正确:枢轴左侧是“小于等于”,右侧是“大于等于”。这在处理重复元素时尤为重要。

2. 边界条件处理不当

  • 问题:当数组为空、只有一个元素或所有元素都相同时,partition 函数可能出现问题。
  • 技巧:在编写 partition 函数时,务必考虑 low >= high 的情况,并确保循环条件和索引操作的正确性。

标签:#数据结构,#快速排序,#算法,#408真题,#Partition,#C语言,#考研

作者简介

周忠良,男,1968 年 10 月生,安徽桐城人,退役军官。现为资深高校教师、研究员,兼具金融科技与人工智能领域丰富实践经验。

  • 教学领域:主讲《计算机学科专业基础(408)》《大数据分析》《JavaEE 开发》《云安全原理》《机器学习》等课程,覆盖本科至研究生层次。
  • 院校合作:曾执教于中国人民大学、大连理工大学、东北大学、北京外国语大学、北京石油化工学院、苏州大学、常州大学、盐城工学院等国内二十多所高校,累计授课超 50 门次,涵盖大数据、人工智能、金融科技等前沿方向。
  • 实践教学:主导“智慧云平台”“分布式系统架构”“金融大数据计量”等企业实训项目,注重产教融合。
  • 学术指导:指导学生获全国水下机器人大赛一等奖、算法竞赛奖项,并获“优秀指导教师”称号。

跨领域专长

  • 技术能力:精通 Python、Java、C++等编程语言,擅长类脑计算、深度学习、大数据分析及云计算安全。
  • 金融科技:持有证券、基金执业资格,深耕量化交易、智能投顾及区块链技术研究。

荣誉与成果

  • 军队科技进步一等奖(国家 863 项目)、二、三等奖等多项奖励
  • 曾任中国传媒大学特聘教授、清华大学 AI 项目研究员

联系方式 :

  • 微信(goodteacher408)
  • E-mail:243969453@qq.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值