文 / Brian McWilliams, Ian Gemp, Claire Vernade
现代 AI 系统可以像勤奋的学生准备考试一样,去处理诸如识别图像中的对象以及预测蛋白质 3D 结构之类的任务。通过大量示例问题训练,这类系统可以逐渐降低错误,直至取得成功。
识别图像中的对象
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
预测蛋白质 3D 结构
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
但这是一项需要独自完成的工作,并且只是已知的学习形式之一。学习也需要与他人互动和交流。一个单独的个体很难自行解决极其复杂的问题。通过让问题解决方案具有类游戏的特质,DeepMind 之前在研究中已经训练了 AI 智能体 (Agent) 来玩夺旗赛并在《星际争霸》中达到大师级水平。因此,我们希望了解基于,以博弈论为模型的视角能否帮助解决其他基本的机器学习问题。
夺旗赛
https://deepmind.com/blog/article/capture-the-flag-science在《星际争霸》中达到大师级水平
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
最近,在 2021 年 ICLR 上,我们发表了论文 “EigenGame:将 PCA 作为纳什均衡 (EigenGame: PCA as a Nash Equilibrium)”,并获得杰出论文奖。我们的研究探索了一种解决旧问题的新方法:我们将主成分分析 (PCA)(一种特征值问题)重新表述为竞争性的多智能体博弈游戏,即 EigenGame。PCA 通常表现为优化问题(或单智能体问题);但是,我们发现多智能体视角可使我们利用最新的计算资源生成新的数据分析和算法。这使得我们能够将主成分分析扩展到以往计算密集型的大规模数据集,并为未来的研究探索提供一种替代方法。
EigenGame:将 PCA 作为纳什均衡
https://openreview.net/forum?id=NzTU59SYbNq
将 PCA 作为纳什均衡
PCA (Principal component analysis) 最早于 20 世纪初期提出,之后便成为了分析高维数据结构