大数据分析_PySpark中类Pandas的df.loc操作(行列定位)
在 PySpark 3.0.3 中, 虽然没有直接类似于 Pandas 中 df.loc 的函数, 但可以通过使用 PySpark 的 select 和 filter 操作来达到类似的功能。
select 用于选择列, 而 filter 用于按条件筛选行。
下面是一个简单的例子, 演示如何使用 PySpark 实现类似于 Pandas 中 df.loc 的功能。
导入 pyspark.sql 相关模块
Spark SQL 是用于结构化数据处理的 Spark 模块。它提供了一种成为 DataFrame 编程抽象, 是由 SchemaRDD 发展而来。
不同于 SchemaRDD 直接继承 RDD, DataFrame 自己实现了 RDD 的绝大多数功能。
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
创建 SparkSession 对象
Spark 2.0 以上版本的 spark-shell 在启动时会自动创建一个名为 spark 的 SparkSession 对象。
当需要手工创建时, SparkSession 可以由其伴生对象的 builder 方法创建出来。
spark = SparkSession.builder.master("local[*]").appName("spark").getOrCreate()
使用 Spark 构建 DataFrame 数据 (行作为元组, 列名作为列表)
当数据量较小时, 可以使用该方法手工构建 DataFrame 数据。
构建数据行 Rows (元组的列表):
Data_Rows = [("Alice", 25, "Female"),
("Bob", 30<