机器学习_PySpark-3.0.3字符标签索引化(StringIndex)实例

机器学习_PySpark-3.0.3字符标签索引化(StringIndex)实例

StringIndexer 是 PySpark-3.0.3 中用于将字符串列转换为数值索引的转换器。

它会根据字符串的出现频率为每个唯一字符串分配一个整数索引。

如果你的字符串类型的日期列是连续的, 频率相同, StringIndexer 会为每个不同的字符串分配一个整数索引, 而不考虑它们的实际顺序。

不考虑它们的实际顺序, 这可能导致模型在处理字符串类型的日期时不会考虑到它们之间的实际顺序关系。

导入 pyspark.sql 相关模块

Spark SQL 是用于结构化数据处理的 Spark 模块。它提供了一种成为 DataFrame 编程抽象, 是由 SchemaRDD 发展而来。

不同于 SchemaRDD 直接继承 RDD, DataFrame 自己实现了 RDD 的绝大多数功能。

from pyspark.sql import SparkSession
from pyspark.ml.feature import StringIndexer

创建 SparkSession 对象

Spark 2.0 以上版本的 spark-shell 在启动时会自动创建一个名为 spark 的 SparkSession 对象。

当需要手工创建时, SparkSession 可以由其伴生对象的 builder 方法创建出来。

spark = SparkSession.builder.master("local[*]").appName("spark").getOrCreate()

使用 Spark 构建 DataFrame 数据 (行作为元组, 列名作为列表)

当数据量较小时, 可以使用该方法手工构建 DataFrame 数据。

构建数据行 Rows (元组的列表):

Data_Rows = [("Alice", 25, "Female"),
             ("Bob", 30, "Male"),
             ("Charlie", 35, "Male")]

构建数据列名 Cols (字符串的列表):

Data_Cols = ["Name"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mostcow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值