数据分析 和 PowerBI 和 DAX 的核心

本文详细介绍了商业数据分析的思路、方法和工具,包括概念、思维、工具和套路。重点讨论了Power BI和DAX在商业分析中的重要作用,从数据指标制定到高级分析方法,提供了具体的案例和分析步骤。强调了数据分析在商业决策中的作用,如理解业务模式、指标体系、数据模型和算法模型的应用,以及如何运用Power BI和DAX解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 道篇

    • 数据分析的商业思维模式

    • 数据分析的核心逻辑思维

    • 数据分析的核心技术思维

    • 数据分析的职业规划设计

  • 术篇

    • 如何理解表作为数据分析的核心载体

    • 如何分析一个表

    • 如何分析多个表

    • 如何理解数据模型

    • 如何理解基于数据模型的计算

    • 如何理解可视化的本质

    • 如何让数据模型与可视化紧密结合

    • 解密维度分析的抽象模型

  • 器篇

    • Power BI 的黑历史

    • DAX 的黑历史

    • 到底怎么看待 Power Pivot

    • 99.999% 的人不知道的 Excel 中最厉害的函数

    • 理解 CALCULATE 的本质

    • 理解 DAX 核心原理

    • 详解三十六个核心 DAX 函数

  • 例篇

    • 搞定总裁:如何让总裁大呼过瘾看报告

    • 搞定客户:NPS 动态分析

    • 搞定产品:帕累托动态分析

    • 搞定财务:制作 PBI 高级财务报表

以上,先占位,9种数据分析思维方法

1. 分类 

分类是一种基本的数据分析方式,数据根据其特点,可将数据对象划分为不同的部分和类型,再进一步分析,能够进一步挖掘事物的本质。 

2. 回归 

回归是一种运用广泛的统计分析方法,可以通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各参数,然后评价回归模型是否能够很好的拟合实测数据,如果能够很好的拟合,则可以根据自变量作进一步预测。 

3. 聚类 

聚类是根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大的一种分类方式,其与分类分析不同,所划分的类是未知的,因此,聚类分析也称为无指导或无监督的学习。 

数据聚类是对于静态数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。 

4. 相似匹配 

相似匹配是通过一定的方法,来计算两个数据的相似程度,相似程度通常会用一个是百分比来衡量。相似匹配算法被用在很多不同的计算场景,如数据清洗、用户输入纠错、推荐统计、剽窃检测系统、自动评分系统、网页搜索和DNA序列匹配等领域。 

5. 频繁项集 

频繁项集是指事例中频繁出现的项的集合,如啤酒和尿不湿,Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集,目前已被广泛的应用在商业、网络安全等领域。 

6. 统计描述

统计描述是根据数据的特点,用一定的统计指标和指标体系,表明数据所反馈的信息,是对数据分析的基础处理工作,主要方法包括:平均指标和变异指标的计算、资料分布形态的图形表现等。 

7. 链接预测 

链接预测是一种预测数据之间本应存有的关系的一种方法,链接预测可分为基于节点属性的预测和基于网络结构的预测,基于节点之间属性的链接预测包括分析节点资审的属性和节点之间属性的关系等信息,利用节点信息知识集和节点相似度等方法得到节点之间隐藏的关系。与基于节点属性的链接预测相比,网络结构数据更容易获得。复杂网络领域一个主要的观点表明,网络中的个体的特质没有个体间的关系重要。因此基于网络结构的链接预测受到越来越多的关注。 

8. 数据压缩 

数据压缩是指在不丢失有用信息的前提下,缩减数据量以减少存储空间,提高其传输、存储和处理效率,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间的一种技术方法。数据压缩分为有损压缩和无损压缩。 

9. 因果分析 

因果分析法是利用事物发展变化的因果关系来进行预测的方法,运用因果分析法进行市场预测,主要是采用回归分析方法,除此之外,计算经济模型和投人产出分析等方法也较为常用。 

以上是数据分析员应熟练掌握的9种数据分析思维方法,数据分析员应根据实际情况合理运用不同的方法,才能够快速精确的挖掘出有价值的信息!

商业数据分析--思路总结

一、概念

什么是商业 B2B/B2C/B2B2C/C2B/B2VC

什么是商业运作供应链-产品/服务-销售渠道-(营销/风控)-用户-售后客服->财务表现+数据表现

商业运作组织有哪些? 前线(销售/渠道/业务)-中台管理(市场/运营/公关)-后台支持(客服/供应链/开发)-战略决策(总办)

它们关心什么?前线(卖货收钱)-中台(品牌客户产品线助力营销)-后台(供应质量服务)-战略决策(往哪走走多远走多快)

解决商业问题的能力? 权力-魅力-创造力-协调力-执行力-数据分析能力

什么是商业分析? 用数据分析方法,解决产品、销售、运营、营销等数据问题。

解读商业数据的步骤? 找标准-做判断-业务含义-初步假设-预测走势-追踪标准-迭代假设-结论

开展商业分析的步骤?清晰主体-明确概念-确定时间-了解原因-明确标准-审核现状-深入分析-输出结论

怎么深入分析? 梳理问题-明确标准-整体趋势-初步假设-关联业务-深入细节-迭代假设-总结结论

理解商业模式的关键? 业务模式-四大角色(产品/渠道/用户/运营)-部门-KPI

什么是商业决策? 战略类->战术类->创意类->执行类->支撑类

策略类决策流程? 方向->目标->内外部条件->关键行动->执行人->作战计划(数据要求高,关键是决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值