直接方法求解最优控制问题
1. 直接转录方法概述
直接转录方法是求解最优控制问题的一类知名方法,也被称为“离散化然后优化”方法。因为在优化过程之前,需要先对问题进行离散化处理。常见的离散化方法包括龙格 - 库塔方法、样条方法、配点方法等,用于对状态方程进行离散化;而对于目标函数的评估,则会使用一些数值积分方法,如梯形法则或辛普森法则。
其中,控制参数化技术(Control Parameterization Technique,CPT)是一种有效的直接转录方法。在 CPT 中,时间域会被若干个切换点划分,在这些切换点处评估控制变量;然后每个切换区间会被若干个积分点划分,在这些积分点处评估状态变量。在每个切换区间,控制变量可以用常数或线性分段连续函数进行近似。
离散化阶段结束后,最优控制问题会转化为一个大或中等规模的有限维非线性规划问题(NLP)。可以使用任何非线性规划软件来求解得到的 NLP,例如 MATLAB 的优化工具箱、SQP 方法、FSQP 方法等。
1.1 问题描述
考虑如下形式的最优控制问题:
[
\min_{u\in U} \phi(x(t_f)) + \int_{t_0}^{t_f} L_0(x(t), u(t)) dt
]
约束条件为:
- 动力学方程:(\dot{x}(t) = f(x(t), u(t)))
- 初始条件:(x(t_0) = x_0)
- 状态不等式约束:(I(x(t)) \leq 0)
- 状态等式约束:(E(x(t)) = 0)
其中,(x, \phi : \mathbb{R} \to \mathbb