
OpenVINO C# API
文章平均质量分 94
分享使用OpenVINO C# API开发深度学习项目
椒颜皮皮虾྅
英特尔边缘计算创新大使 百度飞桨开发者技术专家(PPDE) OpenVINO C# API NuGet Package 作者 主要致力于模型部署相关方面的研究,OpenVINO、TensorRT模型部署套件在C#端使用。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【OpenVINO™】使用OpenVIN.CSharp.API在C#平台快速部署PP-OCRv5模型识别文本
PP-OCRv5是百度开源的高效OCR系统,通过轻量化SLANet网络提速20%,优化多尺度特征融合提升小文本识别,支持80+语言,显著降低复杂场景错误率,适用于移动端/服务器端部署。在本文中,将演示如何使用的**OpenVINO.CSharp.API.Extensions.PaddleOCR** NuGet Package快速在Intel CPU平台落地PP-OCRv5模型原创 2025-06-15 11:45:27 · 1132 阅读 · 0 评论 -
【OpenVINO™】在 Intel Ultra AI PC 设备上使用 OpenVINO™ C# API本地部署YOLOv11与YOLOv12
将使用英特尔® 酷睿™ Ultra 处理器AI PC设备,结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2025.0 部署YOLOv11 和 YOLOv12 目标检测模型,并在AIPC设备上,进行速度测试。原创 2025-03-02 16:49:57 · 1472 阅读 · 0 评论 -
【OpenVINO™】使用 OpenVINO™ C# 异步推理接口部署YOLOv8 ——在Intel IGPU 上速度依旧飞起!!
OpenVINO Runtime支持同步或异步模式下的推理。Async API的主要优点是,当设备忙于推理时,应用程序可以并行执行其他任务(例如,填充输入或调度其他请求),而不是等待当前推理首先完成。 当我们使用异步API时,第二个请求的传输与第一个推理的执行重叠,这防止了任何硬件空闲时间。原创 2024-06-20 15:56:35 · 1524 阅读 · 0 评论 -
Segment Anything CSharp| 在 C# 中通过 OpenVINO™ 部署 SAM 模型实现万物分割
OpenVINO™ C# API 是一个 OpenVINO™ 的 .Net wrapper,应用最新的 OpenVINO™ 库开发,通过 OpenVINO™ C API 实现 .Net 对 OpenVINO™ Runtime 调用.Segment Anything Model(SAM)是一个基于Transformer的深度学习模型,主要应用于图像分割领域。在本文中,我们将演示如何在C#中使用OpenVINO™部署 Segment Anything Model 实现任意目标分割。原创 2024-06-06 13:18:13 · 1335 阅读 · 0 评论 -
【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标
最近YOLO家族又添新成员:YOLOv10,YOLOv10 提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,还介绍了整体效率-精度驱动的模型设计策略,从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.1部署YOLOv10 目标检测模型原创 2024-05-27 15:21:51 · 2294 阅读 · 2 评论 -
使用OpenVINO™.CSharp.API.Extensions.PaddleOCR NuGet Package快速实现OCR文本识别
PP-OCR是PaddleOCR自研的实用的超轻量OCR系统,可以实现端到端的图像文本检测。为了在C#平台实现使用OpenVINO™部署PP-OCR模型实现文本识别,让更多开发者快速上手PP-OCR项目,基于此,封装了OpenVINO.CSharp.API.Extensions.PaddleOCR NuGet Package,方便开发者快速安装使用。在本文中,我们将结合OpenVINO.CSharp.API.Extensions.PaddleOCR NuGet Package向大家展示该程序集的使用方式。原创 2024-05-20 11:39:14 · 1209 阅读 · 0 评论 -
【OpenVINO™】在 C# 中使用OpenVINO™ 部署PP-YOLOE实现物体检测
PP-YOLOE是基于PP-YOLOv2的优秀单级无锚模型,超越了各种流行的YOLO模型。PP-YOLOE有一系列型号,命名为s/m/l/x,通过宽度乘数和深度乘数进行配置。PP-YOLOE避免使用特殊的运算符,如可变形卷积或矩阵NMS,以便友好地部署在各种硬件上。 在本文中,我们将使用OpenVINO™ C# API 部署 PP-YOLOE实现物体检测。原创 2024-05-13 10:22:12 · 737 阅读 · 0 评论 -
【OpenVINO™】在 C# 中使用OpenVINO™ 部署 YOLO-World 模型实现实时开放词汇对象检测
YOLO-World是一个融合了实时目标检测与增强现实(AR)技术的创新平台,旨在将现实世界与数字世界无缝对接。该平台以YOLO(You Only Look Once)算法为核心,实现了对视频中物体的快速准确识别,并通过AR技术将虚拟元素与真实场景相结合,为用户带来沉浸式的交互体验。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.0部署 YOLO-World实现实时开放词汇对象检测.原创 2024-05-06 10:52:13 · 1886 阅读 · 0 评论 -
【OpenVINO™】在 C# 中使用 OpenVINO™ 部署 Blazeface 模型快速实现人脸检测
Blazeface模型是Google推出的一款专为移动GPU推理量身定制的轻量级且性能卓越的人脸检测器。在本文中,我们将使用OpenVINO™ C# API 部署 Blazeface 实现人脸检测。原创 2024-05-06 10:45:23 · 907 阅读 · 0 评论 -
【YoloDeployCsharp】基于.NET Framework的YOLO深度学习模型部署测试平台-源码下载与项目配置
基于.NET Framework 4.8 开发的深度学习模型部署测试平台,提供了YOLO框架的主流系列模型,包括YOLOv8~v9,以及其系列下的Det、Seg、Pose、Obb、Cls等应用场景,同时支持图像与视频检测。模型部署引擎使用的是OpenVINO™、TensorRT、ONNX runtime以及OpenCV DNN,支持CPU、IGPU以及GPU多种设备推理原创 2024-05-05 15:01:25 · 1606 阅读 · 0 评论 -
【YoloDeployCsharp】基于.NET Framework的YOLO深度学习模型部署测试平台
基于.NET Framework 4.8 开发的深度学习模型部署测试平台,提供了YOLO框架的主流系列模型,包括YOLOv8~v9,以及其系列下的Det、Seg、Pose、Obb、Cls等应用场景,同时支持图像与视频检测。模型部署引擎使用的是OpenVINO™、TensorRT、ONNX runtime以及OpenCV DNN,支持CPU、IGPU以及GPU多种设备推理。原创 2024-05-04 17:09:09 · 2297 阅读 · 3 评论 -
【OpenVINO™】使用 OpenVINO™ C# API 部署 YOLOv9 目标检测和实例分割模型(下篇)
YOLOv9模型是YOLO系列实时目标检测算法中的最新版本,代表着该系列在准确性、速度和效率方面的又一次重大飞跃。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.0部署YOLOv9 目标检测和实例分割模型。原创 2024-04-11 10:01:45 · 1426 阅读 · 4 评论 -
【OpenVINO™】使用 OpenVINO™ C# API 部署 YOLOv9 目标检测和实例分割模型(上篇)
YOLOv9模型是YOLO系列实时目标检测算法中的最新版本,代表着该系列在准确性、速度和效率方面的又一次重大飞跃。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.0部署YOLOv9 目标检测和实例分割模型。原创 2024-04-11 10:00:07 · 1480 阅读 · 2 评论 -
【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇)
YOLOv5 是革命性的 "单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持 OpenVINO™ 部署工具加速模型推理,因此在该项目中,我们将结合之前开发的 OpenVINO™ C# API 部署 YOLOv5 DET 模型实现物体对象检测。原创 2024-02-06 11:42:21 · 1691 阅读 · 0 评论 -
【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (上篇)
YOLOv5 是革命性的 "单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持 OpenVINO™ 部署工具加速模型推理,因此在该项目中,我们将结合之前开发的 OpenVINO™ C# API 部署 YOLOv5 DET 模型实现物体对象检测。原创 2024-02-06 11:38:19 · 1488 阅读 · 0 评论 -
【OpenVINO™】在 Windows 上使用 OpenVINO™ C# API 部署 Yolov8-obb 实现任意方向的目标检测
YOLOv8 OBB 模型是YOLOv8系列模型最新推出的任意方向的目标检测模型,可以检测任意方向的对象,大大提高了物体检测的精度。同时官方发布的模型已经支持 OpenVINO™ 部署工具加速模型推理,因此在该项目中,我们将结合之前开发的 OpenVINO™ C# API 部署YOLOv8 OBB 模型实现旋转物体对象检测。原创 2024-01-31 12:46:25 · 2152 阅读 · 4 评论 -
【OpenVINO】 使用 OpenVINO CSharp API 部署 PaddleOCR 项目介绍
在之前的项目中,我们已经使用 OpenVINOTM CSharp API 部署 PaddleOCR 全系列模型,但随着PaddleOCRv4版本发布以及OpenVINO CSharp API版本迭代,上一版本的项目已经不再适用。因此在推出的最新项目中,已经完成了对PaddleOCRv4的匹配,并且采用了最新版本的 OpenVINOTM CSharp API,可以更快的实现在不同平台进行部署,减少使用者在使用时的步骤以及问题。原创 2024-01-08 12:14:02 · 1881 阅读 · 0 评论