Information Disturbing (树形dp)hdu3586

本文探讨了一种在战场环境中破坏敌方通讯网络的有效策略。通过分析敌军士兵间的通讯网络结构,采用二分查找和树形DP算法确定设备的最小上限制功率,以确保前线士兵无法将情报反馈给总指挥官。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

In the battlefield , an effective way to defeat enemies is to break their communication system. 
The information department told you that there are n enemy soldiers and their network which have n-1 communication routes can cover all of their soldiers. Information can exchange between any two soldiers by the communication routes. The number 1 soldier is the total commander and other soldiers who have only one neighbour is the frontline soldier. 
Your boss zzn ordered you to cut off some routes to make any frontline soldiers in the network cannot reflect the information they collect from the battlefield to the total commander( number 1 soldier). 
There is a kind of device who can choose some routes to cut off . But the cost (w) of any route you choose to cut off can’t be more than the device’s upper limit power. And the sum of the cost can’t be more than the device’s life m. 
Now please minimize the upper limit power of your device to finish your task. 

Input

The input consists of several test cases. 
The first line of each test case contains 2 integers: n(n<=1000)m(m<=1000000). 
Each of the following N-1 lines is of the form: 
ai bi wi 
It means there’s one route from ai to bi(undirected) and it takes wi cost to cut off the route with the device. 
(1<=ai,bi<=n,1<=wi<=1000) 
The input ends with n=m=0. 

Output

Each case should output one integer, the minimal possible upper limit power of your device to finish your task. 
If there is no way to finish the task, output -1.

Sample Input

5 5
1 3 2
1 4 3
3 5 5
4 2 6
0 0

Sample Output

3

一棵树,切断一些边,使得叶子节点到根节点不连通的,但是花费有个限制,需要你求出最大权得最小值 。最大值最小化需要二分,但是二分后得,检验标准是什么?那就是建完以后得花费,如果标准设得猜得高了,就会超出限制,就需要缩小标准,树形dp。

dp[i]表示当前节点的最小花费。

决策:当前得边到底剪不剪,取决于他和标准得大小,所以状态转移:

void tree_dp(int node,int f)
{
    dp[node] = 0;bool leaf = 1;
    for(int i = 0;i < (int)s[node].size();i ++)
    {
        int &son = s[node][i];
        if(son == f)continue;
        leaf = 0;
        tree_dp(son,node);
        if(edge[node][son] <= limit) dp[node] += min(dp[son],edge[node][son]);
        else dp[node] += dp[son];
    }
    if(leaf) dp[node] = INF;//叶子节点为无穷大。
}

完整代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;

const int maxn = 1005;
const int INF = 1000005;
vector<int>s[maxn];
int edge[maxn][maxn];
int n,m,limit;
int dp[maxn];

void tree_dp(int node,int f)
{
    dp[node] = 0;bool leaf = 1;
    for(int i = 0;i < (int)s[node].size();i ++)
    {
        int &son = s[node][i];
        if(son == f)continue;
        leaf = 0;
        tree_dp(son,node);
        if(edge[node][son] <= limit) dp[node] += min(dp[son],edge[node][son]);
        else dp[node] += dp[son];
    }
    if(leaf) dp[node] = INF;
}

bool check()
{
    tree_dp(1,0);
    if(dp[1] > m)return 0;
    else return 1;
}

int bin_search(int l,int r)
{
    int ans = -1;
    while(l <= r)
    {
        int mid = (l + r) / 2;
        limit = mid;
        if(check())
        {
            ans = limit;
            r = mid - 1;
        }
        else l = mid + 1;
    }
    return ans;
}

int main()
{

    while(scanf("%d%d",&n,&m)==2&&(n+m))
    {
        memset(s,0,sizeof(s));
        memset(edge ,0,sizeof (edge));
        memset(dp,0,sizeof dp);
        int a,b,w,l = 1,r = 0;
        for(int i = 0;i < n-1;i ++)
        {
            scanf("%d%d%d",&a,&b,&w);
            edge[a][b] = edge[b][a] = w;
            s[a].push_back(b);
            s[b].push_back(a);
            r = max(r,w);
        }
        printf("%d\n",bin_search(l,r));
    }
    return 0;
}

 

<think>好的,我现在需要帮助用户使用Gemini 2.0 API对电影评论进行情感分类,分为正面、中性或负面。首先,我得确认用户的需求。他们可能想了解整个流程,包括如何设置API、准备数据、编写提示词以及处理结果。可能需要分步骤指导,确保每个环节都清晰。 首先,用户提到的是Gemini 2.0,但需要确认是否正确,因为目前公开的主要是Gemini API,可能是指Gemini 1.0 Pro或其他版本。不过按照用户的问题,继续以Gemini 2.0来回答,可能是指最新的版本。需要查阅官方文档确认API的使用方法。 接下来,用户需要分类为三类:正面、中性、负面。通常情感分类是二元的,但这里多了一个中性,可能需要调整提示词来明确分类标准。比如,在提示词中定义中性评价的特征,如既不积极也不消极,或者混合型评论。 然后,关于API的使用步骤,可能需要安装必要的库,比如google-generativeai。需要指导用户如何获取API密钥,并在代码中进行设置。同时,处理可能的错误,比如认证问题或网络连接问题。 数据准备部分,用户可能有自己的数据集,需要指导如何读取和处理数据,比如从CSV文件中读取评论内容。此外,需要处理长文本的情况,因为电影评论可能较长,Gemini模型是否有输入长度限制?需要提醒用户注意这一点,必要时进行截断或分段处理。 编写有效的提示词是关键。需要明确指示模型进行分类,并指定输出格式。比如,要求返回“positive”、“neutral”或“negative”,并且只输出这个结果,避免多余的解释。可能需要示例来few-shot学习,但用户的问题中没有提到有标注数据,所以可能只能使用zero-shot方法。 在代码实现部分,需要展示如何调用API,处理响应,并可能处理可能的异常,比如重试机制或超时设置。同时,需要考虑API调用的成本,提醒用户注意使用量和费用。 测试和验证部分,用户可能需要评估模型的准确率。建议他们准备一个标注好的测试集,运行分类后计算准确率、混淆矩阵等指标。如果效果不佳,可能需要调整提示词或考虑微调模型(如果Gemini支持的话)。 此外,需要提醒用户考虑数据隐私问题,确保传输的评论内容不包含敏感信息。如果处理的是公开数据,可能问题不大,但如果是私有数据,可能需要更多安全措施。 最后,生成相关问题,帮助用户深入思考,比如如何处理多语言评论、实时分类的需求、性能优化等。这些扩展问题可以增强回答的全面性,为用户后续工作提供方向。 总结来说,整个流程需要分步骤讲解,从设置环境到代码实现,再到测试优化,每个环节都要考虑可能的问题和解决方案。同时,保持回答结构清晰,代码示例准确,并给出实用建议,确保用户能够顺利实施他们的项目。</think>以下是使用Gemini 2.0 API实现电影评论情感分类的完整指南: ### 一、实现步骤 1. **API环境配置** ```python !pip install google-generativeai import google.generativeai as genai # 从Google AI Studio获取API密钥 GOOGLE_API_KEY = "your-api-key" genai.configure(api_key=GOOGLE_API_KEY) ``` 2. **模型初始化** ```python model = genai.GenerativeModel('gemini-1.5-pro-latest') # 当前最新版本 ``` 3. **提示工程(Prompt Engineering)** ```python classification_prompt = """ 请将以下电影评论分类为positive/neutral/negative,仅输出分类结果。 分类标准: - positive: 明确表达喜爱或推荐 - neutral: 陈述事实无情感倾向 - negative: 明确表达批评或不推荐 评论内容:"{review_text}" 分类结果: """ ``` 4. **分类函数实现** ```python def classify_sentiment(review): try: response = model.generate_content( classification_prompt.format(review_text=review), generation_config={"temperature": 0.2} # 降低随机性 ) return response.text.strip().lower() except Exception as e: print(f"API Error: {str(e)}") return "error" ``` ### 二、实战示例 ```python test_reviews = [ "这部电影的叙事节奏完美,演员表现令人难忘", "片长120分钟,导演是张艺谋", "糟糕的剧本和拙劣的表演毁了这个好题材" ] for review in test_reviews: print(f"「{review}」→ {classify_sentiment(review)}") ``` ### 三、性能优化建议 1. **批量处理**:使用`batch_encode()`处理多个评论可提升效率 2. **缓存机制**:对重复评论建立缓存数据库 3. **混合模型**:对置信度低的预测结合传统NLP方法验证 4. **分级分类**:先判断是否有情感倾向,再进行正负分类 ### 四、注意事项 1. API调用限制:免费版每分钟60次请求[^1] 2. 文本长度:建议保持评论在500字以内 3. 多语言支持:通过添加`target_language="zh-CN"`参数实现 4. 错误处理:建议添加自动重试机制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值