今天我们的学习笔记到了概率论这一篇,相信各位对于概率都不会太陌生,在高中作为选择题和大题,大家与之接触的不算少,那么走近属于大学的概率,战友们也一举拿下!!!
一、事件概率
1.1事件
事件是指在某个试验或观察中可能发生的结果或结果的集合。是样本空间的一个子集,可以包含一个或多个样本点,也可以是整个样本空间。事件用大写字母,如 A,B,C 等表示。
例:
事件A={1,2,3}
1.2基本事件
基本事件是指试验中不可再分的最简单的事件。每个基本事件代表一个单一的可能结果。
例子:
抛一枚硬币:基本事件是“正面"和”反面“。
抛一个六面骰子:基本事件是会出现,1-6的每个数字。
1.3复合事件
复合事件是由多个基本事件组合而成的事件。复合事件代表多个可能结果的集合。
例子:
抛两枚硬币,复合事件中可以出现"至少一个正面“
-
这个事件包含“正面-正面”、“正面-反面”和“反面-正面”三个基本事件。
-
掷一个六面骰子:复合事件可以是“点数大于3”,这个事件包含“4点”、“5点”和“6点”三个基本事件。
1.4必然事件
必然事件是指在试验中一定会发生的事件。必然事件发生的概率为1.在样本空间中,必然事件包括了样本空间中的所有样本点。
比如在丢骰子时候,点数一定在1-6之间,这就是一个必然事件,和基本事件比的话一个点就是一个事件,而会发生每一个基本事件就是必然事件这是我的感觉。
1.5不可能事件
不可能事件值在试验中绝对不会发生的事件。
不可能的事件发生的概率为0,通常用∅表示。
投掷一个六面骰子发生大于点数六的情况便是一个不可能事件。
1.6样本空间
样本空间是指试验中所有可能结果的集合。样本空间通常用大写字母 Ω 表示。
例如:
投一枚硬币:硬币的正反面便都是属于样本空间里面。
投一个六面骰子样本空间包括1-6。
而样本空间中有一个关键的个体:样本点
样本点通常用小写字母ω表示。
二、事件间的关系
本章学习的为事件概率,分别了解事件的概念和概率的概念,才能熟练掌握本章知识。
2.2.1包含关系
包含关系是指一个事件是另一个事件的子集。如果事件A包含在事件B中,那么A发生时,B必然发生,即:A⊆B
2.2.1并集
并事件是指两个或多个事件中至少有一个事件发生的情况。事件A和事件B的并事件记作 A∪B或A+B,表示 A 或 B 发生。
2.2.2交集
交事件是指两个或多个事件同时发生的情况。事件A和事件B的交事件记作A∩B或AB,表示 A 和 B 同时发生。