算法竞赛备考冲刺必刷题(C++) | 洛谷 P6337 CRNE

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

洛谷:P6337 [COCI 2007/2008 #2] CRNE - 洛谷

【题目描述】

在一个矩形棋盘上,切与矩形的边平行的 n n n 次,问最多棋盘能被切成多少块?

【输入】

输入一行一个整数 n n n

【输出】

输出一行一个整数表示棋盘最多被分成的块数。

【输入样例】

1

【输出样例】

2

【算法标签】

《洛谷 P6337 CRNE》 #COCI(克罗地亚)# #2007#

【代码详解】

#include <bits/stdc++.h>
using namespace std;

int n;  // 输入的正整数
int a;  // 第一个分割数
int b;  // 第二个分割数

int main()
{
    // 输入正整数n
    cin >> n;
    
    // 将n尽可能平均分成两部分
    a = n / 2;     // 第一部分取n的一半(向下取整)
    b = n - a;      // 第二部分为剩余部分
    
    // 计算并输出(a+1)*(b+1)
    // 这个公式表示将n分成a和b两部分后,
    // 可以组成的不同正数对的数量
    cout << (a + 1) * (b + 1) << endl;
    
    return 0;
}

【运行结果】

1
2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值