Mask-rcnn数据集预处理脚本

Mask-rcnn数据集预处理脚本

import json,os

def save(self, path):
    f = open(path, "w")
    d = {
        "vocab_size": self.vocab_size,
        "hidden_dim": self.hidden_dim,
        "n_head": self.n_head,
        "drop_out": self.drop_out,
        "layer_count": self.layer_count,
        "max_len": self.max_len
    }
    d = json.dumps(d)
    f.write(d)
    f.close()


def load(self, path):
    d = open(path).read()
    d = json.loads(d)
    self.vocab_size = d['vocab_size']
    self.hidden_dim = d['hidden_dim']
    self.n_head = d['n_head']
    self.drop_out = d['drop_out']
    self.layer_count = d['layer_count']
    self.max_len = d['max_len']



json_files=r'C:\Users\GuoQingru\Downloads\data\data_annotated'

new_root=r'C:\Users\GuoQingru\Downloads\data\gqr'  # 新生成的json文件存放路径
for json_name in os.listdir(json_files):
    json_path=os.path.join(json_files,json_name)

    with open(json_path,encoding='utf-8') as f:
        data=f.read()
        inf=json.loads(data)
        label_len=len(inf["shapes"])   # 得到含有的标签总数
        label_count={"beans":1,"roots":1}



        temp_list=[]
        for index in range(label_len):
            label_name=inf["shapes"][index]['label']
            if label_name in label_count.keys():
                temp_label=label_name
                label_name=label_name+str(label_count[temp_label])
                label_count[temp_label]=label_count[temp_label]+1
                inf["shapes"][index]['label']=label_name
                temp_list.append(inf["shapes"][index])

        inf["shapes"]=temp_list
        inf["imagePath"]=os.path.splitext(json_name)[0]+'.jpg'
        print(inf)
        new_path=os.path.join(new_root,json_name)
        with open(new_path,'w', encoding='utf-8') as f_reslut:
            d = json.dumps(inf)
            f_reslut.write(d)









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值