一、题目描述
向一个空栈中依次存入正整数,假设入栈元素 n(1<=n=2^31-1)按顺序依次为 nx…n4、n3、n2、n1,每当元素入栈时,如果 n1=n2+…+ny(y 的范围[2,x],1<=x<=1000),则 n1~ny 全部元素出栈,重新入栈新元素 m(m=2*n1)。
如: 依次向栈存入 6、1、2、3, 当存入 6、 1、2 时,栈底至栈顶依次为[6、 1、2]; 当存入 3 时 3=2+1,3、2、1 全部出栈,重新入栈元素 6(6=2*3),此时栈中有元素 6;因为 6=6,所以两个 6 全部出栈,存入 12,最终栈中只剩一个元素 12。
二、输入描述
使用单个空格隔开的正整数的字符串,如”5 6 7 8”,左边的数字先入栈,输入的正整数个数为,1<=X<=1000
三、输出描述
最终栈中存留的元素值,元素值使用空格隔开,如”8 7 6 5”,栈顶数字在左边6 1 2 3
1、输入
5 10 20 50 85 1
2、输出
1 170
3、说明
5 + 10 + 20 + 50 = 85
2 * 85入栈,1入栈,输出 1 170