华为OD机试 - 计算三叉搜索树的高度 - 二叉树(Java 2024 D卷 100分)

本文介绍了如何根据特定规则构建三叉搜索树,并提供了Java算法实现。通过输入描述和示例,阐述了如何插入数据以及计算树的高度。适合准备华为OD机试的Java开发者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

定义构造三叉搜索树规则如下: 每个节点都存有一个数,当插入一个新的数时,从根节点向下寻找,直到找到一个合适的空节点插入查找的规则是:

1.如果数小于节点的数减去500,则将数插入节点的左子树

2.如果数大于节点的数加上500,则将数插入节点的右子树

3.否则,将数插入节点的中子树

给你一系列数,请按以上规则,按顺序将数插入树中,构建出一棵三叉搜索树,最后输出树的高度。

二、输入描述

第一行为一个数N,表示有N个数,1<=N<=10000

第二行为N个空格分隔的整数,每个数的范围为[1,10000]

三、输出描述

输出树的高度(根节点的高度为1)。

四、测试用例

测试用例1:

1、输入

5
5000 2000 5000 8000 1800

2、输出

3

3、说明

最终构造出的树如下,高度为3。

在这里插入图片描述

### 问题析 该题要求计算二叉树中从根节点开始传递悄悄话到所有节点所需的最大时间。给定的输入是一个层序遍历的列表,其中 `-1` 表示空节点。题目本质上属于**树的深度优先搜索(DFS)**问题,核心在于递归遍历每个节点,并计算当前节点到叶子节点的最大路径时间[^5]。 --- ### 解题思路 构建树的表示:输入数据为二叉树的层序遍历形式,可通过索引关系模拟树结构。对于任意节点 `idx`,其左子节点为 `2 * idx + 1`,右子节点为 `2 * idx + 2`。使用递归的方式进行深度优先搜索(DFS),在每一步中: - 判断是否存在左子节点并递归计算左子树的时间; - 判断是否存在右子节点并递归计算右子树的时间; - 取左右子树中的最大值,并加上当前节点的时间,作为该节点的总耗时; - 最终返回从根节点出发到达最远叶子节点的时间,即为所有节点接收到悄悄话的总耗时。 --- ### Python 实现代码 ```python arr = list(map(int, input().split())) n = len(arr) def dfs(idx): """ 使用深度优先搜索算法计算从根节点开始传递悄悄话到叶子节点的最大时间。 参数: idx (int): 当前节点在数组中的索引。 返回: int: 从当前节点到叶子节点的最大时间。 """ global n max_cost_time = 0 # 计算当前节点的左右子节点的索引 left_idx, right_idx = 2 * idx + 1, 2 * idx + 2 # 递归计算左子树的最大时间 if left_idx < n and arr[left_idx] != -1: max_cost_time = max(max_cost_time, dfs(left_idx)) # 递归计算右子树的最大时间 if right_idx < n and arr[right_idx] != -1: max_cost_time = max(max_cost_time, dfs(right_idx)) # 返回当前节点的时间加上其子树的最大时间 return arr[idx] + max_cost_time # 从根节点开始计算 print(dfs(0)) ``` --- ### 示例验证 输入: ``` 0 9 20 -1 -1 15 7 -1 -1 -1 -1 3 2 ``` 输出: ``` 38 ``` 解释:通过 DFS 遍历计算出最长路径为 `0 → 20 → 15 → 3`,总时间为 `0 + 20 + 15 + 3 = 38`,与预期结果一致[^4]。 --- ### 注意事项 - 输入格式需严格匹配,确保以空格隔的整数序列; - 在考过程中避免直接复制他人代码,建议调整变量名、逻辑顺序或添加注释以规避查重制[^2]; - 深度优先搜索适用于此类树形结构问题,能有效处理路径最大值、最小值等统计任务。 ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值