
推荐系统
文章平均质量分 91
guoyuhaoaaa
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
推荐搜索系统中关于多场景学习的常见方法
最近公司准备在做“one model to serve all”相关的探索 (毕竟行情不好了,大家都在为降本增效做好准备。做完了模型层面的合并事宜之后,接下来要发生的事情大家懂的都懂)。这两天看了一些业界做的比较好的方法,正好周末总结一下。今天的讲解方式并不是说将以上材料中的内容按照顺序从前到后完整的论述下来。而是按照一种建模框架的思路,将各个部分的内容融合进来。原创 2022-10-24 10:41:48 · 2430 阅读 · 2 评论 -
基于边缘计算框架的端上推荐模型
今天的博客主要参考了2020年CIKM会议的paper《EdgeRec: Recommender System on Edge in Mobile Taobao》。这篇paper提出的在手机淘宝客户端上部署的边缘计算推荐模型应该是边缘计算在推荐领域落地应用的开山之作。首先,我来解释一下我理解的“边缘计算”这个概念在淘宝推荐领域应用的意思。所谓“边缘计算”其实是随着手机移动端的计算能力、存储能力越来越强,相较于传统的CS(client,server)模式中client端只负责用户行为特征数据采集,其被赋予了原创 2021-03-12 15:51:31 · 1353 阅读 · 2 评论 -
基于GNN网络的session推荐模型(知识图谱技术在推荐场景的应用)
今天的博客主要参考了2019年AAAI的论文《Session-based Recommendation with Graph Neural Networks》和2020年SIGIR的论文《Global Context Enhanced Graph Neural Networks for Session-based Recommendation》。主要讲解了如何利用当下最火的GNN模型辅助Session-based 下的行为序列建模。所谓Session-based 场景下的推荐模型建模,其实就是利用用户在t原创 2020-12-27 18:26:00 · 1199 阅读 · 0 评论 -
利用深度学习网络显示挖掘高阶特征交互的CTR模型
今天的论文主要参考了华为诺亚方舟实验室这两年的3篇paper,分别是2019年WWW会议上的《Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction》,2020年KDD会议上的《AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction》和20原创 2020-09-30 19:44:29 · 2422 阅读 · 0 评论 -
一种基于超长用户点击序列的CTR预估模型(算法和工程架构的 co-design)
今天的论文参考了2019年KDD的paper《Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction》,这也是阿里妈妈盖坤组最新的在定向广告方向的研究实践成果,即在进行CTR预估的时候考虑了用户更长时间的行为序列信息。首先从整体来讲,我觉得这篇paper是有一定划时代的意义的,和之前...原创 2020-06-22 11:31:15 · 2226 阅读 · 0 评论 -
深度学习在工业界的应用案例(二)
今天的博客主要参考了4篇paper,分别为阿里妈妈定向广告推荐团队的《Deep Session Interest Network for Click-Through Rate Prediction》和《Deep Match to Rank Model for Personalized Click-Through Rate Prediction》,蚂蚁金服风控团队的《A Semi-supervised Graph Attentive Network for Financial Fraud Detection》原创 2020-06-02 20:56:45 · 1932 阅读 · 0 评论