二八、特征向量和特征值

1. 定义

任意满足等式:

T(\vec{v}) = \lambda \vec{v} \quad and \quad \vec{v} \neq \vec{0}

的向量,称为变换T的特征向量,向量前的比例因子称为特征向量的特征值:

\begin{align*} \vec{v} &: eigenvector \\ \lambda &: eigenvalue \end{align*}

为什么要讨论特征向量和特征值?因为特征向量是一组很好的基向量,变换矩阵在计算上非常简单。零向量无法作为基向量

2. 特征值公式

det(\lambda I_n - A) = 0

证明:

T: R^n \to R^n

T(\vec{v}) = A \vec{v} = \lambda \vec{v}

A \vec{v} = \lambda I_n \vec{v}

(\lambda I_n - A) \vec{v} = \vec{0}

假设

B = \lambda I_n - A

因此

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值