LeetCode之Maximum Subarray

本文介绍了一种使用动态规划求解最大子数组和问题的方法。通过定义子状态为以数组中第i个数为结尾的最大和子数列,进而得出动态规划方程,并给出具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本题的意思是在一个整数数组中找出和最大的一个连续子数列之和。

我采用动态规划的算法来解决此题。把以数组中第i个数为结尾的最大和子数列作为子状态,动态规划方程为dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0),其中,nums为原整数数组,dp[i]为以数组中第i个数为结尾的最大和子数列之和。最后,在数组dp中挑选最大值就是本题的解。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        int* dp = new int[n]; //dp[i] means the maximum subarray ending with A[i];
        
        dp[0] = nums[0];
        
        int max = dp[0];
        
        for (int i = 1; i < n; ++i) {
            dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
            max = max > dp[i] ? max : dp[i];
        }
        
        return max;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值