博主作为一名大模型开发算法工程师,很希望能够将所学到的以及实践中感悟到的内容梳理成为书籍。作为先导,以专栏的形式先整理内容,后续进行不断更新完善。希望能够构建起从理论到实践的全流程体系。 助力更多的人了解大模型,接触大模型,一起感受AI的魅力!
Transformer作为一种革命性的深度学习架构,在自然语言处理(NLP)等领域打破了传统循环神经网络(RNN)和卷积神经网络(CNN)在处理序列数据时所面临的诸多限制。相较于RNN在处理长距离依赖时可能出现的梯度消失或爆炸问题,以及CNN受限于局部感受野无法全局建模序列信息,Transformer提出了一种崭新的基于自注意力机制的设计思想,显著提升了模型在理解和处理序列数据时的能力。Transformer架构主要包含以下几个关键部分:
- 自注意力机制
首先,Transformer的核心组件是自注意力层(Self-Attention)。这一机制突破了固定窗口大小或时间步长的约束,允许模型在处理输入序列时全面考虑所有位置之间的复杂依赖关系。具体来说,自注意力机制通过对输入序列的每个位置生成查询(Query)、键(Key)和值(Value)三个向量,计算任意两个位置之间的注意力得分,即它们的相关性权重。随后,根据这些权重对所有位置上的值向量进行加权求和,从而获得一个能够体现全局上下文信息的新表征。
- 多头注意力机制
为了更全面地捕获序列中存在的多种类型和层次的关联信息,Transformer创新性地引入了多头注意力(Multi-Head Attention)的概念。这种设计