深度学习(1):BP神经网络

本文是一篇适合初学者的BP神经网络教程,详细介绍了BP神经网络的结构,包括浅层与深度神经网络的区别,以及感知器的工作原理。重点讲解了BP网络的核心步骤——正向传播与反向传播,特别是梯度下降法的应用。同时,阐述了局部梯度在反向传播中的作用。最后,提供了Python实现代码的讲解,帮助读者深入理解并应用BP神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:

BP神经网络的结构

浅层神经网络 深度学习的神经网络
只有一个隐含层 有多个隐含层
在这里插入图片描述 在这里插入图片描述

感知器

感知器(Perceptron)包括输入项、权重、偏置、激活函数、输出组成。
在这里插入图片描述


激活函数常使用 Sigmoid函数

因为经过他的斜率和原函数的斜率相同(即不影响梯度)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值