同步π-演算中的确定性
1. 引言
同步π-演算(Sπ-演算)是一种基于SL模型的同步π-演算,它放松了Esterel模型的要求,允许对一个瞬间内信号缺失的反应推迟到下一个瞬间发生。这种模型在描述并发和确定性系统方面具有重要意义。本文将探讨Sπ-演算中的确定性及其相关概念,旨在提供一个精简的确定性理论,并展示如何利用并发理论中在卡恩网络之后引入的想法来阐明并发系统中确定性的研究。
2. 组合语义
2.1 标签转换系统
为了描述程序与其环境的交互,我们引入了标签转换系统(Labelled Transition System, LTS)。LTS是一种形式化的数学模型,用于描述并发系统的行为。在Sπ-演算中,LTS用于捕捉程序在不同状态之间的转换。每个状态都可以通过一系列标签(label)进行描述,标签表示程序可能发生的动作。
2.2 双模拟概念
双模拟(bisimulation)是并发系统中用于验证两个系统是否等价的重要概念。在Sπ-演算中,我们引入了组合性的标记双模拟概念。双模拟关系是一种二元关系,它确保两个系统在行为上是不可区分的。具体来说,如果两个系统在一个双模拟关系中,那么它们在任何一步的转换后仍然保持在该关系中。
示例:双模拟关系
假设我们有两个系统 ( P ) 和 ( Q ),它们之间的双模拟关系可以表示为:
系统 | 动作 | 新状态 |
---|---|---|
( |