- 博客(721)
- 收藏
- 关注
原创 人工智能在药物发现中的革命:制药创新的范式转变
将人工智能(AI)整合到药物发现中已经彻底改变了制药创新,解决了传统方法成本高、耗时耗力以及失败率高的挑战。通过利用机器学习(ML)、深度学习(DL)和自然语言处理(NLP),AI增强了药物开发的各个阶段,包括靶点识别、候选优化、从头药物设计和药物再利用。AI工具,如用于蛋白质结构预测的AlphaFold和用于基于结构的药物设计的AtomNet,显著加快了发现过程,提高了效率并降低了成本。
2025-07-12 11:48:19
274
原创 从o1-mini到DeepSeek-R1,万字长文带你读懂推理模型的历史与技术
正如我们将看到的,它是这类模型中第一个完全放弃了任何监督训练的模型,表明复杂的推理能力可自然地从使用强化学习的大规模训练中涌现。这样的结果与我们在封闭式推理模型中看到的性能趋势是一致的 ——DeepSeek-R1-Zero 在强化学习训练后实现了令人印象深刻的性能,并且可以通过并行解码策略进一步提高其性能。此外,即使是最小的蒸馏模型也比未针对推理进行优化的标准封闭式 LLM 表现更好(例如 GPT-4o),而 320 亿和 700 亿参数的蒸馏模型在大多数基准测试中的性能都超过了 o1-mini。
2025-07-12 11:42:41
239
原创 GraphRAG:用知识图谱与生成式AI开创关系感知的智能新时代
大语言模型(LLM)凭借强大的自然语言理解生成能力,已在众多领域展现出非凡潜力。但模型固有的“知识冻结”“幻觉生成”及领域知识深度不足等问题,限制了其商业与科研应用场景。RAG本质是在生成前动态检索外部知识库,模型不仅依赖参数化记忆,更能实时查找上下文信息,因此大幅提升了准确性、时效性与可靠性。Retriever 检索器:将用户问题与知识库中文本分块进行语义向量匹配,找出最相关的内容段;Generator 生成器:通常为LLM,结合检索到的上下文和原始问题进行答案生成。提升准确率、可查性和透明度。
2025-07-11 11:45:03
567
原创 ElliottAgents: LLM驱动的多智能体股票市场分析和预测系统
关键特性是智能体之间的自然语言对话,促进协作分析的精细化。ElliottAgents展示了AI驱动对话系统在数据密集领域的应用潜力,提升了金融数据的可解释性和适应性预测系统的需求。本文提出的ElliottAgents系统克服了当前市场分析方法的局限,具备分布式特性,实现市场数据的实时并行分析。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-07-10 11:55:45
928
原创 综述-构建实用RAG工具链:开发者必备技术栈深度解析
允许开发者根据特定业务需求定制重排序规则。通过训练监督学习模型(如梯度提升树、神经网络),可以结合多种特征(如向量相似度分数、元数据匹配度、文档更新时间、历史点击行为)进行综合评分。自定义分类器在以下场景中特别有用:需要平衡多个业务指标(如相关性、权威性、时效性)的检索任务,或存在明确业务规则(如优先返回内部政策文档)的垂直领域应用。构建自定义分类器需要一定的标注数据,开发者可以通过主动学习策略逐步提升模型性能,首先对高价值查询的检索结果进行人工标注,再用这些数据迭代优化分类器。
2025-07-10 11:38:58
261
原创 Zotero+Cursor(Copilot也行)构建个人AI知识库
不过我搜了一下已经有人开发了对应python插件,基于zotero的library将文献库中的pdf转成AI可以更好理解的markdown格式,而后我试验了一下,成功了,不仅可以当成知识库,还可以在写Latex的自动生成citation,这里我也是将步骤分享一下。那以下这些PDF籍就是非常不错的学习资源。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-07-08 11:31:10
1008
原创 如何用AI Agent让企业效率翻倍?
举例来说,典型的代表是行业内Agent产品更多的局限于,单点式应答,例如说,经典的办公场景之中,国内大厂产品更多的以“多维表”类型为主,以模版化、标准化来来应对实际市场需求,通过牺牲整体的能力来追逐频率与信任的提升,从某种程度来说,更像是互联网时代产品的优化。具体来看呈现的话,CoCo思考规划能力非常强大,定义问题十分准确,从数据的获取与合规性切入,然后呈现出两种不同的解决方案,即自身搭建专属的监测系统,和使用第三方监测两套方案,然后CoCo分别从不同的角度诠释了两套方案的可行性,与成熟度。
2025-07-08 11:07:48
1288
原创 超赞!本地程序调用云知识库实现RAG功能_阿里百炼加本地知识库
在 Spring AI Alibaba 程序中,我们可以直接使用本地程序调用百炼平台的云知识库,实现知识库文档解析、分块、向量化存储等一条龙服务。这样,,可以大大提升开发效率,非常哇塞。那问题来了,如何对接百炼平台的云知识库呢?本文我们基于最新版正式版 Spring AI Alibaba 和百炼平台带着大家一起操作一下。编写代码操作云知识库。
2025-07-04 11:38:39
864
原创 构建强大 AI 智能体(Agent)的关键技术-Context Engineering(上下文工程)
但如果你提供了更多背景信息,比如你的日程表、对方是谁、你们之前的邮件往来,甚至还能调用发邀请的工具,这个助手就能给你一个精准又贴心的回答,比如:“嘿,Jim,明天我全天都排满了,星期四上午可以吗?上下文工程就是要确保 AI 在“对的时间”拿到“对的信息”和“对的工具”,以最适合的格式呈现,从而完成任务。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-07-04 11:26:16
737
原创 2025上半年:新势力奔涌和Agent战国时代的到来
前言 -最近一直想写一篇AI Agent的文章,正好借着25年过半,写一遍总结,浅谈下2025年上半年崛起的新势力AI Agent选手们。还记得去年以来,“Agent元年” 的说法一直不绝于耳,很多人已经感到麻木。而今年年初,AI的热点还是DeepSeek,短短几个月时间之后,站在25年的年中,AI领域最引人瞩目的浪潮已经莫过于AI Agent。
2025-07-02 11:44:34
567
原创 从零开始学 Dify - 万字详解 Dify 工作流图引擎(GraphEngine)的实现机制
Dify 工作流引擎是一个基于事件驱动的图执行引擎,它能够处理复杂的业务逻辑流程,支持条件分支、并行执行、循环和错误处理等高级功能。接下来将深入理解 Dify 工作流引擎的工作原理和核心设计。
2025-07-01 22:01:22
1134
原创 【转行大模型工程师笔记】12-MoE混合专家模型知识扫盲
我曾有篇做动态网络的论文,如果再给我一次机会,我会改名 MoE Video Prediction现在找几篇论文补补 MoE 知识,相关 AI 总结由 跃问 生成。,稍微概括如下:23 年 12 月 Mixtral 发布的 7B x 8 的 MoE 模型在多项指标超越 Llama2,而且它推理计算量只相当于 13B 模型,MoE 架构的优势是可以快速堆参数量但是不显著增加推理成本。据说 GPT4 是 8 个 GPT3 级别的模型组成一个 220B x 8 的 MoE 模型。
2025-07-01 21:54:05
766
原创 【转行大模型工程师笔记】10-编程能力微调相关数据
我挑了几篇我觉得相关数据集比较好用的论文读一下,尽量摘取有信息量的内容huggingface 找不到论文数据集,但有一个类似WizardCoder 是把 WizardLM 提出的指令进化利用在编程领域的工作,对通用指令进化做了编程领域改造。进化框架非常直观,包含一些方法和一个问题:用 GPT3.5 做的数据生成。进化方法有几种,1. 增加约束项 2. 具体化某个约束 3. 要求增加题目的推理步骤 4. 提供一段错误代码误导模型 5. 增加时空复杂度要求。
2025-06-30 11:57:30
914
原创 大模型岗做的六个工作
智能体调用的工具可以使用专门的工具编写;比如可以搭建一个MCP服务,实现天气获取的函数功能,这样在工作流中就可以调用实现的功能函数完成天气的查询服务。也可以通过编写插件的方式,直接将功能打包成插件安装在dify这样的工作流框架中。
2025-06-24 11:58:36
670
原创 Graph-RAG全面综述:如何用知识图谱+大模型解决信息检索难题?
这篇论文的摘要部分首先肯定了rag作为一个不需要通过训练解决llm的幻觉、领域知识缺乏和信息过时等问题,但是数据库中不同实体之间复杂的关系结构还是采用Graph的方法利用跨实体的结构信息来实现更精确和全面的检索,捕获关系知识并促进更准确的上下文感知响应会更加合理。所以就写了这么一篇综述主要就是将GraphRAG工作流形式化,包括基于图的索引、图引导检索和图增强生成这三大块内容。并对每个阶段的核心技术和方法做了一个介绍。最后还研究了一些下游任务,任务领域、评估方法和工业用例和未来的方向。
2025-06-24 11:51:16
921
原创 我保证!这是全网最简单的Dify部署指南!没有之一
最近打算在dify上搭建智能体,网页版的话有时候会因为网络问题卡顿,所以干脆就直接在本地部署dify。记录一下部署的过程,顺便也能给其他想要部署但是不知道怎么操作的朋友留个操作手册。1.我们在github上把这个项目clone下拉2.下载完之后解压启动 Dify 服务器的最简单方法是通过 docker compose。在终端输入和,查看回复,如出现下方信息则表示安装成功直接在解压文件夹docker的目录的地址前输入cmd➡️回车进入终端根据官方文档执行,出现报错。
2025-06-23 14:43:24
1041
原创 检索增强生成(RAG)领域关键数据集综述:分类、挑战与展望
检索增强生成(RAG)通过融合外部知识库与大型语言模型,已成为解决知识密集型自然语言处理(NLP)任务的关键范式。高质量、多样化的数据集是推动RAG技术发展、评估模型能力和揭示其局限性的基石。本文旨在对RAG领域的关键数据集进行一次系统性的梳理与全景分析。我们基于对30篇核心研究论文的分析,提炼并审查了148个相关数据集,并首次提出一个涵盖六大类别的层次化分类体系,即。
2025-06-23 14:02:13
870
原创 搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。我们(UIUC & Amazon)提出的。该方法使用名为的奖励函数,衡量搜索器是否真的为生成带来了有效提升。实验表明,s3 在使用仅。
2025-06-18 11:52:00
655
原创 17 种(高级)RAG 技术,可将您的 RAG 应用程序原型转变为生产就绪型解决方案
没有明确的路径可循。这是大量的试错。就像任何其他数据科学用例一样,我们有一组可以使用的工具,尝试找到我们特定问题的解决方案。这就是这些项目最初的乐趣所在。如果有一本静态的食谱可以遵循,那不是很无聊吗?
2025-06-18 11:49:43
252
原创 【建议收藏】AI 智能体(Agent) 定义、分类、技术架构和应用路径
智能体(Agent)是一种能够感知环境、制定决策并采取行动以实现特定目标的AI系统,一般具有记忆、规划、采取行为、使用工具等基本能力,如下图所示,其中规划中有思维链、能进行反思、目标分解。与传统AI系统不同,智能体具有自主性、持续性和适应性,能够在复杂环境中持续学习和优化自身行为。
2025-06-16 14:27:04
1087
原创 北京大学|第十二弹来了!253页《DeepSeek在教育和学术领域的应用场景与案例》,上中下三篇齐发,绝了!
DeepSeek在教育和学术领域的应用场景与案例(上、中、下三篇)》是由北京大学青鸟人工智能研究院、计算机学院元宇宙技术研究所及教育学院学习科学实验室联合发布的深度研讨报告。该文档系统阐述了DeepSeek技术如何重塑教育生态,以“教”与“学”双轨并行为核心,为教育工作者提供从教学设计到学生能力培养的全链路AI赋能方案。文档聚焦「人机协作教育范式」的创新实践:- 提出“逆向课程设计法”等原创方法论,破解AI与教学融合的结构化难题;- 覆盖单学科到跨学科PBL(项目制学习)的智能化教学路径;
2025-06-16 14:06:13
1007
原创 bge-base-en-v1.5微调实战!手把手教你打造垂直领域“最强大脑”,让Embedding模型秒变行业专家!
在构建RAG(检索增强生成,Retrieval-Augmented Generation)系统时,想要实现“问有所答、答之有理”,一份高质量的嵌入模型远比你想象的重要。而在一些专业领域,比如医疗、法律或金融,通用嵌入模型往往难以捕捉专业术语的细微差别,检索表现就会大打折扣。此时,嵌入微调(Embedding Fine-tuning)成为提升系统准确率的关键一步。嵌入(Embedding)可以看作是将文本转化为向量的“翻译器”,它把语义关系编码成多维空间中的位置。相似的句子在空间中相距更近,不相似的则更远。
2025-06-13 11:03:32
665
原创 企业级大模型应该选择 Prompt、RAG、微调还是从零训练?——生成式AI最佳实践全指南
生成式AI技术发展迅猛,企业在应用这类技术以解决业务难题时,面临着诸多方案的选择。
2025-06-12 10:21:41
837
原创 大模型+智能体,AI 落地应用的当下和未来
伴随着人工智能技术的飞速发展,AI 大模型与智能体的深度融合正逐渐成为推动产业变革的核心力量。大模型作为“认知引擎”,赋予传统软件系统和硬件设备理解物理世界、生成知识系统和进行推理决策的能力;智能体作为“行动实体”,实现与物理世界的交互和具体任务执行。两者既非简单并列,也非传统的包含关系,而是通过在架构层面的融合互通、在功能上的协同互补,构建起“感知—决策—执行”完整智能闭环,成为人工智能在生产生活各种场景中实现落地应用的关键载体。
2025-06-10 13:48:25
906
原创 拿下36K的AI产品经理offer,他是如何实现职业转型的?
随着人工智能技术的飞速发展,AI产品经理这一职位逐渐成为科技行业的香饽饽。不少技术专业的应届生、技术岗、行业经验资深产品经理纷纷转型AI赛道。很多毕业生/职场人知道AI产品经理却没有深入了解过,看到有朋友转AI方向了,所以自己也想要转AI产品经理。在网上看了很多AI智能体、AI+应用项目等零散知识,然后学习一下武装进简历里,去求职却收不到面试邀约。问题出在哪里呢?说白了就是想转AI产品经理,你要然后个人优势和过往经验选择适合领域进行专业提升,提升匹配度。
2025-06-10 11:51:35
1058
原创 这一篇带你入门大模型微调,大模型微调从入门到精通,收藏这篇就够了!
分解成两个低维度(矩阵运算 m * r * r * n =m* n),上图中数据 x 都要给原来的模型和分解后的模型(的 r 矩阵,也就是 Lora 矩阵) 训练,用的时候要合并。
2025-06-09 22:28:10
1302
原创 AI Agents开源工具栈全解析~
一个成功的Agent开发,关键不在于追逐每个热门新工具,而是务实地选择、组合、迭代。希望能给看到这里的小伙伴,提供一个高效率的起点,更快地构建出真正有价值的AI Agent。
2025-06-09 21:16:56
761
原创 大模型面试必看书籍!《百面大模型》,一书打通大模型求职与实战,附PDF!
百面大模型》不是一本简单的面试题集,而是一本融合原理讲解 × 工程实践 × 面试突破的实战型技术参考书:•用真实面试题引导学习路径,建立大模型知识框架•用项目实战拆解技术细节,提升开发与部署能力•用大厂真题沉淀方法论,帮助你从“会答题”走向“能解题”求职通关,只是起点;构建系统技术力,才是你的长期核心竞争力。这本《百面大模型》书已整理并打包好PDF了放这里了↓↓↓↓。
2025-06-05 11:57:59
1428
原创 Agent综述论文火了,10大技术路径一文看尽
研究团队认为,未来,AI Agents的发展将朝着更加自主化、智能化的方向演进。它们不再局限于被动响应,而是能基于上下文和目标主动推理,具备主动智能(Proactive Intelligence)。通过深度集成外部工具(Tool Integration)和因果推理能力(Causal Reasoning),AI Agents可以更高效地处理复杂问题。持续学习(Continuous Learning)机制让它们能不断优化自身表现,而信任与安全(Trust & Safety)机制的完善则确保其输出可靠、无偏见。
2025-06-04 12:05:41
1096
原创 当大模型汲取进化记忆,它离“人性”还有多远?
大语言模型(LLMs)作为由复杂算法和海量数据驱动的产物,会不会“无意中”学会了某些类似人类进化出来的行为模式?这听起来或许有些大胆,但背后的推理其实并不难理解:首先,人类的心理、认知及行为不是随便“凑”出来的。它们是几百万年自然选择的结果,长期受到生存、繁衍、合作、冲突等各种“进化压力”的雕琢与塑造。
2025-06-04 09:45:00
977
原创 Cursor入门:MCP开发调用和项目实战
最近刷了几篇cursor的文章,看到其中一篇文章介绍了几个cursor项目开发案例,突然有种睁眼看世界的感觉。之前对AI Coding的认知还停留在tab补全、自动生成单元测试上,没想到现在已经发展到直接能开发项目了,某种意义上做到了“有嘴就行”。于是试玩了下cursor,并结合了MCP、Rules、Docs等新功能,帮助对cursor不熟的同学快速入门。一、概念Model Context Protocol,模型上下文协议。
2025-06-04 08:15:00
1599
原创 Deepseek R1 0528实测:性能直逼顶尖,普通电脑本地运行全攻略
Deepseek R1 0528 的发布,无疑是开源大模型领域的一个里程碑。它不仅在性能上达到了与国际顶尖闭源模型同场竞技的水平,更重要的是,它坚持开源,并提供了可在消费级硬件上运行的蒸馏版本。
2025-06-03 22:07:50
1311
原创 大模型入门实战教程:快速掌握AI基础知识
在掌握机器学习之前,理解支撑这些算法的基本数学概念非常重要。:这是理解许多算法(特别是深度学习算法)的关键。主要概念包括向量、矩阵、行列式、特征值和特征向量、向量空间以及线性变换。:许多机器学习算法涉及到连续函数的优化,这需要理解导数、积分、极限和级数。多变量微积分以及梯度的概念也很重要。:这些知识对于理解模型如何从数据中学习并进行预测至关重要。主要概念包括概率理论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计和贝叶斯推断。
2025-05-31 07:45:00
1702
原创 人人都能搭建!零代码搭建个人RAG知识库
上面就是一个简单的利用Coze,不需要写任何一行代码就可以实现简单的个人知识库,这对于普通人来说是极大便捷的。当然它还有其他功能,通过添加插件可以实现“网页文章提取”、“ppt生成”、“图片生成”等等的功能,感兴趣的读者都可以去尝试一下,打造一个属于自己的AI小助理。
2025-05-28 11:40:30
596
原创 大模型基础:基本概念、Prompt、RAG、Agent及多模态(非常详细)零基础入门到精通,收藏这一篇就够了
随着大模型的迅猛发展,LLM 作为人工智能的核心力量,正以前所未有的方式重塑着我们的生活、学习和工作。无论是智能语音助手、自动驾驶汽车,还是智能决策系统,大模型都是幕后英雄,让这些看似不可思议的事情变为可能。1. LLM基础知识3. RAG的应用4. Agent的应用5. 多模态模型1. LLM基础知识1.1 LLM基本概念从字面意思来讲,LLM 是 Large Language Model 这三个单词的首字母缩写,意为大语言模型。
2025-05-28 11:24:13
989
原创 北京大学|第十弹来了!30页全解析《AI工具深度测评与选型指南-副本01 Lovart》,Lovart到底是何方神圣?
AI工具深度测评与选型指南 v1.0-副本01 Lovart》是由北京大学AI肖睿团队联合北大青鸟人工智能研究院、北大计算机学院及北大教育学院学习科学实验室共同编写的专业指南。该文档聚焦全球首个设计领域AI Agent——Lovart,通过深度测评与实践指导,系统解析其核心功能、操作流程及行业应用价值,旨在帮助设计师、创意工作者及非专业用户高效掌握这一工具,探索AI赋能设计的新范式。本指南共30页,涵盖四大核心章节,内容兼具理论与实操性,具体章节简介如下:\1. 初探Lovart:开启智能设计新纪元。
2025-05-27 18:10:22
945
原创 技术思考:小尺寸+两阶段式多模态文档解析模型Dolphin思路评析及PP-OCRv5更新
先来看看文档智能相关进展,在及技术路线上,也有一些新的玩法。比如,思路,效果实测并不理想,尤其是带图片的文档,公式解析和复杂表格解析一般、OCR幻觉比较严重。。这一类(Nougat、Kosmos-2.5、Vary、Fox、GOT、olmOCR、SmolDocling、Mistral-OCR)的好些,例如ppocr更新了5.0版本,传统方案更踏实。顺着说第二件事,就是说下ppocr更新的5.0版本发生的变化,以及通过一个OCR-Reason的评测来看看多模态处理文档OCR任务的能力。抓住。
2025-05-24 14:03:47
805
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人