- 博客(752)
- 收藏
- 关注
原创 AI智能体教程(100问/技术/市场/团队/避坑)从零基础到落地,看这篇就够了!
AI智能体创业之路充满了未知与挑战,但也蕴藏着巨大的机遇。这份100个核心问题清单,为你在创业前提供了一个全面审视和思考的框架。当你逐一理清这些问题的答案时,你对AI智能体创业的认知会更加清晰,也能更有针对性地制定创业计划。创业从来不是一蹴而就的事情,需要不断地学习、探索和调整。希望这份清单能成为你创业路上的指南针,帮助你避开一些不必要的弯路,更顺利地开启AI智能体创业之旅。
2025-08-25 11:22:30
863
原创 AI人才就业指南(行业危机/高薪岗位/入局策略)从传统岗位萎缩到AI赛道突围,看这篇就够了!
2025开年,AI技术打得火热,正在改变前端人的职业命运:阿里云核心业务全部接入Agent体系;字节跳动30%前端岗位要求大模型开发能力;腾讯、京东、百度开放招聘技术岗,80%与AI相关……大模型正在重构技术开发范式,最残忍的是,业务面临转型,领导要求用RAG优化知识库检索,你不会;带AI团队,微调大模型要准备多少数据,你不懂;想转型大模型应用开发工程师等相关岗,没项目实操经验……曾经React、Vue等热门的开发框架,已不再是就业的金钥匙。如果认为。
2025-08-25 10:58:25
617
原创 AI Agent构建保姆级指南(避坑+实战)从零基础到独立开发,看这篇就够了!
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。有了记忆,代理可以随着时间的推移不断改进,记住过去的行为,并做出更具凝聚力的响应。更多工具≠更好的结果。然而,成功的关键在于选择正确的工具,而不是让Agent面临太多的选择。
2025-08-22 10:52:28
796
原创 AI智能体新架构设计(MCP框架全解析)从零基础到落地实战,看这篇就够了!
和。这两个术语听起来很相似,甚至有重叠之处,但它们解决的是完全不同的问题。今天,我将深入剖析这两个概念:它们是什么,各自的优势在哪里,以及为什么理解它们的区别对我们构建更持久的 AI 系统至关重要。下文我们详细剖析之。11、AI 智能体:思考、行动、重复是一个利用大语言模型来思考目标并采取行动的系统,通常会形成一个循环。:例如“帮我订一张去巴黎的机票”。:例如“搜索航班 → 比较价格 → 订票”。:使用工具、API 等。。
2025-08-22 10:21:48
915
原创 企业级AI Agent全链路架构设计:从数据采集到智能决策的闭环实战,避坑指南+架构图解!
RAG系统巧妙地采用了双阶段检索机制来精确锁定所需信息。在粗排阶段,通过利用高效的倒排索引技术,系统能够迅速筛选出与查询相关的文档集合,大大缩小了搜索范围。而在精排阶段,则采用Cross-Encoder评估每个段落与查询之间的相关性,确保了信息的准确性和相关性。此外,知识更新模块的设计十分巧妙,它实时监控数据源的变化情况。一旦检测到有新的FDA新药审批公告发布,就会立即触发向量库的增量更新过程,从而保证系统输出的信息始终保持最新状态。
2025-08-20 11:18:21
1378
原创 告别繁琐!MCP+自然语言驱动n8n workflow:3步搞定RAG部署,效率提升10倍!
在探讨n8n-mcp之前,我们需要理解两个基础概念:开源工作流平台n8n是个开源的工作流自动化平台,其优势在于它的可扩展性和灵活性。n8n的源代码始终可见,确保了完全透明度。它可以自由部署在任何环境中。支持自定义节点和功能扩展,满足个性化需求。mcp协议:AI调用工具的万能接口Model Context Protocol(mcp)是连接AI模型与外部工具的标准化协议 它解决了一个关键问题:如何让AI助手真正理解和操作复杂的外部系统?
2025-08-20 10:39:31
866
原创 提示词与上下文工程(保姆级教程)官方学习路径全解析,看这一篇就够了!
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。在与AI的交互中,我们最需要保持的是,用比AI更提前的全景思维,经过“已知求未知”的AI交互,拿到我们想要的东西。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
2025-08-17 09:30:00
744
原创 AI Agent工程量为何远超想象?(保姆级避坑指南)从根源剖析到高效构建,看这一篇就够了!
研究报告与行业分析一再提示:agent 的产业化不是简单的“把模型接到 API”,而是把模型嵌入到复杂的软件工程、运维、安全与治理体系中。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!研究与从业报告指出,要实现可靠的 agent,需要新型的测试方法(如基于场景的长期验收、对抗测试、在线金丝雀发布等),这些都会拉长开发与维护周期。
2025-08-16 11:30:57
1009
原创 本地部署AI大模型(保姆级教程)vLLM从零基础到性能优化,看这一篇就够了!
在云服务器的数据盘里,新建一个“LLM”文件夹,专门用来存放模型,同时,在根目录下,新建一个“download.py”文件,将刚刚复制的代码复制进去,这里需要注意的是,model_dir里,是直接缓存到云服务器上,我们后面需要使用该模型,所以在模型后面增加一个“catch_dir”,制定下载路径,这里我把模型下载到我刚刚新建的LLM文件夹下。这里需要注意的是,python文件里的端口号需要改成vllm里的8000,另一个,虽然本地模型其实是没有apikey的,但是框架是要求必须有,所以这里随便写一个就行。
2025-08-16 10:56:01
692
原创 构建可靠AI Agent(保姆级教程)从提示词到知识库,手把手实战指南,看这一篇就够了!
Agent系统由五个关键组件构成:大语言模型(LLM)提示词(Prompt)工作流(Workflow)知识库(RAG)工具(Tools)LLM和工具调用已经形成了相对标准化的技术栈。LLM方面,无论选择云端大模型(如阿里百炼平台、IdeaLab)还是本地部署(如Ollama),都有成熟的解决方案;工具调用方面,MCP协议的普及让工具集成变成了配置问题而非开发问题。因此,业务开发的核心竞争力在于提示词 + 工作流 + 知识库上。
2025-08-15 22:06:58
761
原创 企业级RAG实战(保姆级教程)从零搭建FastMCP服务,看懂模型上下文协议,看这一篇就够了!
在企业级的RAG系统落地过程中,成为了关键挑战。在本次实践中,我基于 FastMCP 工具,尝试构建一个完整的,并将其引入企业RAG架构中,探索其在复杂工具链调度、上下文保持、智能决策等方面的能力。为什么选择 FastMCP?FastMCP 是对 MCP 协议的轻量实现,支持标准化的能力注册、健康检查、工具调用等接口。
2025-08-15 21:20:13
804
原创 AI大模型RAG系统教程(智能体重构版)从零基础入门到精通,看这一篇就够了!
因为大模型本身的限制问题,导致大模型缺少部分资料,因此在咨询大模型具体的问题之前,需要先找到问题相关的文档,然后告诉大模型,大模型才能回答我们的问题;给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!所以,相较于传统的RAG技术,基于智能体的RAG技术有更强的自主性,更强的灵活性,以及更强的扩展性。检索和生成,而检索的目的是为了增强生成的质量。
2025-08-14 11:23:56
1683
原创 AI Agent Prompt教程(设计原理+实战技巧)从零基础入门到精通,看这一篇就够了!
没有好的Prompt,再强的模型也是“无头苍蝇”,反之精准的Prompt,能让Agent从机械的执行流程中解放出来,升级为可以灵活应变的智能工具,是低成本释放AI潜力的核心钥匙,更是中小企业的福音!对于搭建智能体的人来说,掌握Prompt的设计非常重要,也是“用最低成本让AI Agent听话”的关键!给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-08-14 11:01:16
561
原创 学习 RAGFlow 的文件上传逻辑
在上一篇中,我们学习了 RAGFlow 的系统架构和启动流程,了解了 RAGFlow 的和两大核心组件,一个负责提供外部接口和平台基本功能,另一个则负责文件的解析和切片处理。从系统架构图中,我们可以看到 RAGFlow 的核心流程包括->->->->->这些步骤,今天我们就从源码的角度,先来学习下文件上传的相关逻辑。
2025-08-13 14:04:58
988
原创 企业场景下大模型AI应用具体案例(二)——征服AI幻觉!Dify+RAGFlow打造企业级精准决策引擎
通过与RAGFlow的API深度集成,系统可在处理非结构化数据的同时,实现语义层面的精准匹配,充分发挥“数据+语义”双轮驱动的优势,为企业提供更高质量的智能检索服务。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。
2025-08-13 11:10:41
487
原创 LangGraph实战教程-多智能体架构(Multi-Agent)
大模型多智能体系统(Large Model Multi-Agent System) 是由多个基于大语言模型(LLM)的智能体(Agent)组成的协作系统。每个智能体具备独立的任务处理能力,通过协同工作解决单一智能体难以完成的复杂问题。其核心特征包括:• 分布式协作:智能体通过通信、协商或竞争实现目标。• 角色分工:不同智能体承担专业角色(如决策者、执行者、验证者)。• 共享状态管理:使用共享内存、消息传递或黑板机制同步信息。• 动态工作流:任务根据上下文在智能体间动态流转。
2025-08-12 11:18:43
747
原创 做了两年AI Agent,我发现99%的AI Agent项目都死在了Message Flow设计上
最近和几个AI创业的朋友聊天,发现一个有趣的现象:大家都在搞Agent,但聊起具体实现时,基本都在Message Flow这个环节栽过跟头。说实话,我自己也踩过这个坑。两年前刚开始做Agent产品时,觉得不就是让模型调用几个API嘛,有多难?结果发现,真正的难点不在模型调用,而在于如何设计一个稳定、可扩展的消息流架构。今天想跟大家聊聊这个话题,算是给准备入坑或者正在坑里的朋友们一些参考。
2025-08-12 11:04:18
644
原创 落地视角:大模型分类体系与应用场景选择
然后是推理增强大语言模型,顾名思义就是在基座大语言模型基础上,进行专门的微调和强化学习来增强其深度推理能力,典型表象就是它有思考Thinking过程,最早是OpenAI的O1系列带动,年初DeepSeek R1开源让它发扬光大,大热之后,然后3月份千问就紧急开源了Qwq-32B模型,当然现在回头再看,它应该是Qwen3正式发布之前的过渡模型。截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。这三弹和五一前发布的Qwen3模型啥关系?
2025-08-01 11:52:33
744
原创 AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN
本文系统回顾了计算机视觉的发展历程,从早期基于手工特征的传统方法,到深度学习的崛起与卷积神经网络(CNN)的广泛应用,并通过数学原理、代码示例与可视化手段,全面解析了卷积操作的本质与CNN的架构设计。
2025-08-01 11:22:00
1029
原创 在RAG中文档处理质量参差不齐的情况下——提升召回精度的企业级解决方案
而这种情况下,大模型的表现肯定会比小模型要好,这也是为什么在前面强调说是大模型,而不是小模型的原因。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!原因在于随着大模型技术的发展,大模型的能力也变得越来越强,因此在某些情况下人工做的并一定比模型做的好,特别是这种对文档进行处理的场景,模型根据语义对文档进行拆分或处理,或许比人工做的要更好。
2025-07-30 15:00:23
602
原创 GPT-5「全家桶」爆出本周上线!惊艳首测秒出网页,编程彻底起飞
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。
2025-07-30 14:26:20
636
原创 Grok 4:人工智能巅峰之作——语音与视频模式双开,打破沟通局限
这得益于整个堆栈的创新,包括新的基础设施和算法工作,这些工作将训练的计算效率提高了 6 倍,以及大规模的数据收集工作,XAI将可验证的训练数据从主要的数学和编码数据显著扩展到更多领域。只需对准摄像头,立即说话,Grok 就能实时洞察,分析你的场景,并在语音聊天体验中实时响应你的需求。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-07-29 12:07:00
1715
原创 收藏!一篇Graph+AI Agents最新技术综述
最近出了一篇关于图(Graphs)与人工智能代理(AI Agents)结合的综述性研究,提出了一个分类框架来组织这一领域的研究进展,详细讨论了图技术在AI代理的规划、执行、记忆和多代理协调等核心功能中的作用。Graph与AI Agents相结合的总体示意图。图方法论:利用图进行图数据组织和知识提取人工智能代理方法论:基于大型语言模型(LLM)的基础模型和基于强化学习(RL)的学习范式,构成了人工智能代理的核心流程人工智能代理用于图:代理在图建模和学习方面的强大能力,例如图注释、合成和理解。
2025-07-29 11:58:23
843
原创 RAG效果秘籍:别再只盯着LLM性能?先让大模型读懂文档!
从今年初Deepseek的爆火,到如今被冠以“AI Agent”元年的称号,今年已让无数企业看到了AI在辅助办公上的应用价值,纷纷投入到AI数智化转型的方向上,其中搭建企业知识库就是一条热门“赛道”。根据联想集团与IDC联合发布的《全球CIO报告》,2025年全球企业AI支出规模将达到2024年的近3倍,其中42%的资金涌向生成式AI(2024年仅占11%)。从数据上可以看出全球企业LLM的投入规模和增速在今年飞速提升,全面拥抱AI已成为企业间共识。
2025-07-26 13:41:12
517
原创 一文搞懂大语言模型如何进化为多模态大模型?
(1)文本数据的特点:离散的token序列,维度相对较低(2)图像数据的特点:连续的像素矩阵,维度高且具有空间结构(3)音频数据的特点:时序连续信号,具有频域和时域特征大语言模型的处理单元是Token(词块),从大语言模型进化为多模态大模型的关键是把所有信息都转换成Token。:天然就是Token序列:切块变Token把图片分割成16×16像素的小块每个图块编码成一个视觉Token一张224×224的图片 → 196个视觉Token:切段变Token按时间窗口分割音频。
2025-07-26 11:45:46
930
原创 AI智能体的12种变现方式,入局早的已经月入10W了
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。• 常见案例:写作助手(普通版免费,高级版99元/年)、行业分析师(基础问答免费,深度报告收费)、测评工具(基础功能免费,详细分析收费)。成本低,利润高,适合刚入门的朋友。
2025-07-24 11:07:59
1257
原创 一文带你了解RAG(检索增强生成) | 概念理论介绍+ 代码实操
RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。RAG 技术架构图介绍:富文本 主要存储于 txt 文件中,因为排版比较整洁,所以获取方式比较简单实战技巧:【版面分析——富文本txt读取】
2025-07-23 11:18:33
1210
原创 八种大型语言模型(LLM)架构比较-从DeepSeek-V3到Kimi K2:现代LLM体系结构设计简介
总的来说,DeepSeek-V3是一个庞大的6710亿参数模型,在推出时表现优于其他开放权重模型,包括4050亿的Llama 3。尽管规模更大,但由于其专家混合(MoE)架构,在推理时间上更加高效,每个标记仅激活了一个小子集(仅有370亿)的参数。另一个关键的区分特点是DeepSeek-V3使用多头潜在注意力(MLA)而不是分组查询注意力(GQA)。MLA和GQA都是标准多头注意力(MHA)的推理有效替代方案,特别是在使用KV缓存时。
2025-07-23 11:06:18
889
原创 基于 LangChain 6步构建企业级 AI 智能体应用
AI 智能体应用在企业场景中落地越来越多了,本文通过从挑选企业业务场景开始,构建最小可行性产品(MVP),再到测试 AI 智能体应用的质量和安全性,最后到生产中的部署运维等全方位带你基于 LangChain 6步构建一个 AI 智能体应用。下文我们详细剖析之。今年很多公司都在谈论构建 AI 智能体,企业很容易想象 AI 智能体如何改变公司已有业务,但许多团队不确定从哪里开始、如何取得进展以及如何设定期望。本指南将带你从想法到实施落地的全过程:以构建电子邮件 AI 智能体的真实案例来说明。
2025-07-22 10:39:31
930
原创 大模型自信心崩塌!谷歌DeepMind证实:反对意见让GPT-4o轻易放弃正确答案
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。简单来说就是,他们的研究弄明白了为啥大模型有时候自信但有时候也自我怀疑,关键就两点:一是总觉得自己一开始说的是对的,二是太把别人反对的意见当回事儿。中立建议仅提供额外的相关信息。
2025-07-21 14:52:57
795
原创 如何使用知识图谱和向量数据库实现 Graph RAG -分步教程(上篇)
这是因为我们要比较向量数据库和知识图谱,而向量数据库的优势在于它能够在没有丰富元数据的情况下“理解”非结构化数据。我只使用了前 10,000 条数据,以加快计算速度。👉 Weaviate 的官方快速入门教程[9]我还发现这篇文章[10]对于入门很有帮助。。
2025-07-21 13:48:17
950
原创 AI大模型应用架构图大全,一篇带你了解大模型~
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
2025-07-18 11:27:22
936
原创 Coze智能体:既能当管家还能当“牛马“?
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!做过内容的同学都知道,爆款内容不是拍脑袋就可以创作的,很多时候我们需要拆解学习已火的视频、图文,去仿写、改写,最终结合自身特色生成新的内容。不管是哪种创建方式,都像搭积木一样,根据提示插入合适的“木块”,比如先为智能体取个独一无二的名字,写一段介绍,就像简历中的个人基本信息。帮助很多人得到了学习和成长。
2025-07-18 11:03:15
816
原创 人工智能在药物发现中的革命:制药创新的范式转变
将人工智能(AI)整合到药物发现中已经彻底改变了制药创新,解决了传统方法成本高、耗时耗力以及失败率高的挑战。通过利用机器学习(ML)、深度学习(DL)和自然语言处理(NLP),AI增强了药物开发的各个阶段,包括靶点识别、候选优化、从头药物设计和药物再利用。AI工具,如用于蛋白质结构预测的AlphaFold和用于基于结构的药物设计的AtomNet,显著加快了发现过程,提高了效率并降低了成本。
2025-07-12 11:48:19
464
原创 从o1-mini到DeepSeek-R1,万字长文带你读懂推理模型的历史与技术
正如我们将看到的,它是这类模型中第一个完全放弃了任何监督训练的模型,表明复杂的推理能力可自然地从使用强化学习的大规模训练中涌现。这样的结果与我们在封闭式推理模型中看到的性能趋势是一致的 ——DeepSeek-R1-Zero 在强化学习训练后实现了令人印象深刻的性能,并且可以通过并行解码策略进一步提高其性能。此外,即使是最小的蒸馏模型也比未针对推理进行优化的标准封闭式 LLM 表现更好(例如 GPT-4o),而 320 亿和 700 亿参数的蒸馏模型在大多数基准测试中的性能都超过了 o1-mini。
2025-07-12 11:42:41
332
原创 GraphRAG:用知识图谱与生成式AI开创关系感知的智能新时代
大语言模型(LLM)凭借强大的自然语言理解生成能力,已在众多领域展现出非凡潜力。但模型固有的“知识冻结”“幻觉生成”及领域知识深度不足等问题,限制了其商业与科研应用场景。RAG本质是在生成前动态检索外部知识库,模型不仅依赖参数化记忆,更能实时查找上下文信息,因此大幅提升了准确性、时效性与可靠性。Retriever 检索器:将用户问题与知识库中文本分块进行语义向量匹配,找出最相关的内容段;Generator 生成器:通常为LLM,结合检索到的上下文和原始问题进行答案生成。提升准确率、可查性和透明度。
2025-07-11 11:45:03
658
原创 ElliottAgents: LLM驱动的多智能体股票市场分析和预测系统
关键特性是智能体之间的自然语言对话,促进协作分析的精细化。ElliottAgents展示了AI驱动对话系统在数据密集领域的应用潜力,提升了金融数据的可解释性和适应性预测系统的需求。本文提出的ElliottAgents系统克服了当前市场分析方法的局限,具备分布式特性,实现市场数据的实时并行分析。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-07-10 11:55:45
988
原创 综述-构建实用RAG工具链:开发者必备技术栈深度解析
允许开发者根据特定业务需求定制重排序规则。通过训练监督学习模型(如梯度提升树、神经网络),可以结合多种特征(如向量相似度分数、元数据匹配度、文档更新时间、历史点击行为)进行综合评分。自定义分类器在以下场景中特别有用:需要平衡多个业务指标(如相关性、权威性、时效性)的检索任务,或存在明确业务规则(如优先返回内部政策文档)的垂直领域应用。构建自定义分类器需要一定的标注数据,开发者可以通过主动学习策略逐步提升模型性能,首先对高价值查询的检索结果进行人工标注,再用这些数据迭代优化分类器。
2025-07-10 11:38:58
293
原创 Zotero+Cursor(Copilot也行)构建个人AI知识库
不过我搜了一下已经有人开发了对应python插件,基于zotero的library将文献库中的pdf转成AI可以更好理解的markdown格式,而后我试验了一下,成功了,不仅可以当成知识库,还可以在写Latex的自动生成citation,这里我也是将步骤分享一下。那以下这些PDF籍就是非常不错的学习资源。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-07-08 11:31:10
1194
原创 如何用AI Agent让企业效率翻倍?
举例来说,典型的代表是行业内Agent产品更多的局限于,单点式应答,例如说,经典的办公场景之中,国内大厂产品更多的以“多维表”类型为主,以模版化、标准化来来应对实际市场需求,通过牺牲整体的能力来追逐频率与信任的提升,从某种程度来说,更像是互联网时代产品的优化。具体来看呈现的话,CoCo思考规划能力非常强大,定义问题十分准确,从数据的获取与合规性切入,然后呈现出两种不同的解决方案,即自身搭建专属的监测系统,和使用第三方监测两套方案,然后CoCo分别从不同的角度诠释了两套方案的可行性,与成熟度。
2025-07-08 11:07:48
1327
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人