LeetCode 322. 零钱兑换(Java 动态规划)

该博客介绍了如何利用Java实现动态规划算法来解决LeetCode上的322题——零钱兑换。通过状态转移方程dp[i]=min{dp[i], dp[i-coins[j]]+1},找出凑成给定金额所需的最少硬币数量。文章以示例和解析配合,详细解释了动态规划的思路和过程。" 111863524,8650622,UWB技术在电厂安全与人员管理中的应用,"['物联网技术', 'UWB', 'LoRa', '电力安全', '智能制造']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

示例 1:

输入: coins = [1, 2, 5], amount = 11

输出: 3 解释: 11 = 5 + 5 + 1

示例 2:

输入: coins = [2], amount = 3

输出: -1

说明:
你可以认为每种硬币的数量是无限的。

 

分析:

      此题可以使用动态规划来解决,我们定义 dp[i]表示达到i用的最少硬币数,那么状态转移方程为:

dp[i] =Math.min(dp[i-coin]+1,dp[i])

其中i为目标金额,dp[i-coin]+1  代表我们用coin金额的硬币。

/**
 * @program: 个人demo
 * @description: 每次都是pass
 * @author: Mr.Hu
 * @create: 2019-03-29 19:07
 */
public class OJ {
    public static void main(String[] args) {
        System.out.println(coinChange(new int[]{8,2,5},11));
    }
    public static int coinChange(int[] coins, int amount) {
        if (am
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值